Latest Papers

ASME Journal of Mechanisms and Robotics

  • Design of Reconfigurable Articulated Walking Mechanisms for Diverse Motion Behaviors
    on March 20, 2025 at 12:00 am

    AbstractLegged robots are able to move across irregular terrains and those based on 1-degree-of-freedom planar linkages can be energy efficient but are often constrained by a limited range of gaits which can limit their locomotion capabilities considerably. This article reports the design of novel reconfigurable parallel linkages that not only produce different walking patterns but also realize behaviors beyond locomotion. Experiments with an implemented wearable device able to guide the lower extremity through multiple human-like walking trajectories are presented and the preliminary results validate the proposed approach.

  • Modeling, Kinematics, and Dynamics of a Rigid-Flexible Coupling Spring-Cable-Driven Parallel Robot
    on March 20, 2025 at 12:00 am

    AbstractConventional parallel robots are made of rigid materials for the purpose of fast and accurate localization, exhibiting limited performance in large-scale operations. Inspired by the softness and natural compliance of biological systems, this article proposes a rigid-flexible coupling cable-driven parallel robot. The concept of flexible cable and spring hybrid and working principle are introduced. The kinematics of single module and multiple modules connected in series are analyzed and equations are given, and the Lagrange equation is used to establish dynamic models. Finally, two methods are used to validate the kinematics and dynamics. One is to draw the specific structure with the posture of the end-effector and measure the cable length to compare it with the analytical solution in the kinematic model. The other is to build the structure and joint characteristics in simulink, given the posture of the end-effector and the external force/torque, the cable length and the force applied are compared with those obtained from the dynamic model. The reasonableness of the mechanism and the feasibility of the kinematic and dynamic models are verified.

Folding Responses of Origami-Inspired Structures Connected by Groove Compliant Joints

Abstract

The compliant mechanism can effectively reduce friction and eliminate the joint gap during the motion. The performances of compliant joints directly determine the overall behavior of mechanisms. In this paper, a new type of compliant joint is designed based on weakened creases and elastic–plastic materials. Parametric analysis is carried out to investigate the influence of compliant joint details on its structural performances by combining finite element methods and experiments. The compliant joints are evaluated and optimized regarding the rotational stiffness and plastic strain magnitude of the slot region. In addition, the optimized compliant joint is introduced to the Miura unit. The configuration analysis is performed for the folding, unfolding, and releasing processes, which are further extended to the discussion on the cyclic performance of the compliant joint. It can be found that the origami-inspired structures can maintain a high residual stiffness after the release process. Finally, the methodology is applied to the Miura origami array embedded with the designed compliant joint. The results of dimensional errors and stress distributions can show that the design of the compliant joints can effectively control the configuration of the Miura origami array. The principle in this paper can open a new avenue to design and utilize the compliant in the deployable or morphing structures.

Read More

Journal of Mechanisms and Robotics Open Issues