Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Design and Compliant Control of a Piggyback Transfer Robot

Abstract

Patient transfer, such as lifting and moving a bedridden patient from a bed to a wheelchair or a pedestal pan, is one of the most physically challenging tasks in nursing care. Although many transfer devices have been developed, they are rarely used because of the large time consumption in performing transfer tasks and the lack of safety and comfortableness. We developed a piggyback transfer robot that can conduct patient transfer by imitating the motion when a person holds another person on his/her back. The robot consisted of a chest holder that moves like a human back. In this paper, we present an active stiffness control approach for the motion control of the chest holder, combined with a passive cushion, for lifting a care-receiver comfortably. A human-robot dynamic model was built and a subjective evaluation was conducted to optimize the parameters of both the active stiffness control and the passive cushion of the chest holder. The test results of 10 subjects demonstrated that the robot could transfer a subject safely, and the combination of active stiffness and passive stiffness were essential to a comfortable transfer. The objective evaluation demonstrated that an active stiffness of k = 4 kPa/mm along with a passive stiffness lower than the stiffness of human chest was helpful for a comfort feeling.

Read More

Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy