Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamic Modeling and Simulation of a Hybrid Robot
    by Shen N, Yuan H, Li J, et al. on May 12, 2022 at 12:00 am

    AbstractThe unique structure of hybrid robot makes its dynamic characteristic different from that of the traditional machine tools. Therefore, the dynamic model is crucial to both designing and application of hybrid robot. In this paper, a new type of five-degrees-of-freedom (5DoF) hybrid robot is introduced, and its dynamic model is established. First, the kinematic formulas are derived for all the component, and then, the inertia forces or moments are calculated. Second, the active forces or moments in the joints are assumed as variables and the number of variables is reduced by analyzing joint types. Then, an equation set of 36 equilibrium equations with 38 variables is obtained using D'Alembert's principle. Based on the spatial deformation compatibility analysis of two branches, two supplementary equations are derived to determine the solution of dynamic model of the hybrid robot with redundant constraints in its parallel mechanism. Several cases are studied by comparing with ADAMS simulation. The result shows the good accuracy of the proposed dynamic model, which provides a practical method to calculate the reaction force or moment in any joint at any instant for the hybrid robot and thus facilitates dimensional synthesis, trajectory optimization, and smoothing control.

  • Feasibility Design and Control of a Lower Leg Gait Emulator Utilizing a Mobile 3-Revolute, Prismatic, Revolute Parallel Manipulator
    by Soliman A, Ribeiro GA, Gan D, et al. on May 12, 2022 at 12:00 am

    AbstractDesign and control of lower extremity robotic prostheses are iterative tasks that would greatly benefit from testing platforms that would autonomously replicate realistic gait conditions. This paper presents the design of a novel mobile 3-degree-of-freedom (DOF) parallel manipulator integrated with a mobile base to emulate human gait for lower limb prosthesis evaluation in the sagittal plane. The integrated mobile base provides a wider workspace range of motion along the gait direction and reduces the requirement of the parallel manipulator’s actuators and links. The parallel manipulator design is optimal to generate the defined gait trajectories with both motion and force requirements using commercially available linear actuators. An integrated active force control with proportional integral derivative (PID) control provided more desirable control compared to traditional PID control in terms of error reduction. The novelty of the work includes the methodology of human data-oriented optimal mechanism design and the concept of a mobile parallel robot to extend the translational workspace of the parallel manipulator with substantially reduced actuator requirements, allowing the evaluation of prostheses in instrumented walkways or integrated with instrumented treadmills.

  • Announcing the 2021 Best Paper Award and Honorable Mention
    by Krovi V. on May 12, 2022 at 12:00 am

    Together with the Editorial Board of the Journal of Mechanisms and Robotics (JMR), I am pleased to announce the winner of the journal's 2021 Best Paper Award:P. Reinier Kuppens, Miguel A. Bessa, Just L. Herder, and Jonathan B. Hopkins, 2021, “Compliant Mechanisms That Use Static Balancing to Achieve Dramatically Different States of Stiffness,” ASME J. Mech. Robot., 13(2), p. 021010. https://doi.org/10.1115/1.4049438

A Virtual Work Model for the Design and Parameter Identification of Cylindrical Pressure-Driven Soft Actuators

Abstract

In this paper, we derive a model based on the principle of virtual work to describe the deformations of cylindrical pressure-driven soft actuators with four types of fiber reinforcement and with externally applied forces. Such cylindrical actuators are often used as the basis for multi-chamber soft robotic systems, for example, bending actuators. In the virtual work model, each type of reinforcement leads to particular geometric constraints; the energy of the stretched material is determined by the Yeoh material model. Finally, the stretch of the actuator is solved numerically by a minimization problem. The virtual work model yielded only little deviations of the predicted stretch relative to finite element simulations in abaqus. The key contribution of the virtual work model is improved parameter identification for the modeling of cylindrical soft actuators, as it illustrates the possibility to distinguish between material-dependent behavior and geometry-dependent behavior of these actuators. Also, the virtual work model is applicable in the design process of the investigated actuators. We demonstrate that an optimization of the actuator’s inner and outer radii and of its fiber angle, respectively, is possible and we derive design rules including criteria for the choice of fiber reinforcement.

Read More

Journal of Mechanisms and Robotics Open Issues