Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Development of a Biomimetic Masticating Robot for Food Texture Analysis

Abstract

Assessing the food texture via mastication is important for advancing knowledge of food properties so as to develop favorable and healthy food products. Oral processing of food by robots can enable an in vitro assessment of food texture by simulating human mastication objectively. In this study, a chewing robot is developed to mimic the rhythmic motion of the molars to enable controllable chewing kinematics and a biomimetic oral environment. The robotic chewing is realized using a 3 degree-of-freedom (DOF) linkage mechanism, which recreates the molar grinding movement based on molar trajectories and chewing cycle durations previously reported in the literature. Moreover, a soft pneumatically actuated cavity is developed to provide a space to contain and reposition the food between occlusions. To regulate the robotic chewing having variable molar trajectories and chewing durations, the mathematical relationship of the linkage’s actuators and molar movements is investigated for the purpose of motion analysis and control. Accordingly, the design of the robot in terms of linkage, oral cavity, and mechatronics system is performed. The built robot is validated by tracing a planned variable molar trajectory while chewing peanuts. The performance of robot chewing is validated by demonstrating the ability of the robot to chew the peanuts similar to that by human through comparison of peanut particle size distributions (PSDs) and particle median size diameters.

Read More

Journal of Mechanisms and Robotics Open Issues