Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Algorithmic Fingertip Repositioning for Enhanced In-Hand Manipulation of the Objects

Abstract

This article focuses on a method to relocate the robotic fingertips on the surface of the object when the fingertips instantaneously hold the object under precision grasp. Precision grasp involves holding the object using fingertips. Finger gaiting involves repositioning the fingertips on the surface of the object and then manipulation of the object. During repositioning, one contact point leaves the object surface and recontacts at the other point. A metric is defined on the set of feasible grasp configurations to limit deviation from force closure during repositioning of the fingertips. Then, a manipulability-based metric is described to search for the optimal goal grasp states on the object’s surface. The manipulability-based metric is used to search the grasp state to relocate the contacts, such that the range of object motion is increased.

Read More

Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy