Latest Papers

ASME Journal of Mechanisms and Robotics

  • Stable Inverse Dynamics for Feedforward Control of Nonminimum-Phase Underactuated Systems
    on January 25, 2023 at 12:00 am

    AbstractAn enhanced inverse dynamics approach is here presented for feedforward control of underactuated multibody systems, such as mechanisms or robots where the number of independent actuators is smaller than the number of degrees of freedom. The method exploits the concept of partitioning the independent coordinates into actuated and unactuated ones (through a QR-decomposition) and of linearly combined output, to obtain the internal dynamics of the nonminimum-phase system and then to stabilize it through proper output redefinition. Then, the exact algebraic model of the actuated sub-system is inverted, leading to the desired control forces with just minor approximations and no need for pre-actuation. The effectiveness of the proposed approach is assessed by three numerical test cases, by comparing it with some meaningful benchmarks taken from the literature. Finally, experimental verification through an underactuated robotic arm with two degrees of freedom is performed.

Quadrupedal Human-Assistive Robotic Platform (Q-HARP): Design, Control, and Preliminary Testing

Abstract

With the rapid expansion of older adult populations around the world, mobility impairment is becoming an increasingly challenging issue. For the assistance of individuals with mobility impairments, there are two major types of tools in the current practice, including the passive (unpowered) walking aids (canes, walkers, rollators, etc.) and wheelchairs (powered and unpowered). Despite their extensive use, there are significant weaknesses that affect their effectiveness in daily use, especially when challenging uneven terrains are encountered. To address these issues, the authors developed a novel robotic platform intended for the assistance of mobility-challenged individuals. Unlike the existing assistive robots serving similar purposes, the proposed robot, namely, quadrupedal human-assistive robotic platform (Q-HARP), utilizes legged locomotion to provide an unprecedented potential to adapt to a wide variety of challenging terrains, many of which are common in people’s daily life (e.g., roadside curbs and the few steps leading to a front door). In this paper, the design of the robot is presented, including the overall structure of the robot and the design details of the actuated robotic leg joints. For the motion control of the robot, a joint trajectory generator is formulated, with the purpose of generating a stable walking gait to provide reliable support to its human user in the robot’s future application. The Q-HARP robot and its control system were experimentally tested, and the results demonstrated that the robot was able to provide a smooth gait during walking.

Read More

Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy