Latest Papers

ASME Journal of Mechanisms and Robotics

  • Investigation on a Class of 2D Profile Amplified Stroke Dielectric Elastomer Actuators
    on September 24, 2024 at 12:00 am

    AbstractDielectric elastomer actuators (DEAs) have been widely studied in soft robotics due to their muscle-like movements. Linear DEAs are typically tensioned using compression springs with positive stiffness or weights directly attached to the flexible film of the DEA. In this paper, a novel class of 2D profile linear DEAs (butterfly- and X-shaped linear DEAs) with compact structure is introduced, which, employing negative-stiffness mechanisms, can largely increase the stroke of the actuators. Then, a dynamic model of the proposed amplified-stroke linear DEAs (ASL-DEAs) is developed and used to predict the actuator stroke. The fabrication process of linear DEAs is presented. This, using compliant joints, 3D-printed links, and dielectric elastomer, allows for rapid and affordable production. The experimental validation of the butterfly- and X-shaped linear DEAs proved capable of increasing the stroke up to 32.7% and 24.0%, respectively, compared with the conventional design employing springs and constant weights. Finally, the dynamic model is validated against the experimental data of stroke amplitude and output force; errors smaller than 10.5% for a large stroke amplitude (60% of maximum stroke) and 10.5% on the output force are observed.

Quadrupedal Human-Assistive Robotic Platform (Q-HARP): Design, Control, and Preliminary Testing

Abstract

With the rapid expansion of older adult populations around the world, mobility impairment is becoming an increasingly challenging issue. For the assistance of individuals with mobility impairments, there are two major types of tools in the current practice, including the passive (unpowered) walking aids (canes, walkers, rollators, etc.) and wheelchairs (powered and unpowered). Despite their extensive use, there are significant weaknesses that affect their effectiveness in daily use, especially when challenging uneven terrains are encountered. To address these issues, the authors developed a novel robotic platform intended for the assistance of mobility-challenged individuals. Unlike the existing assistive robots serving similar purposes, the proposed robot, namely, quadrupedal human-assistive robotic platform (Q-HARP), utilizes legged locomotion to provide an unprecedented potential to adapt to a wide variety of challenging terrains, many of which are common in people’s daily life (e.g., roadside curbs and the few steps leading to a front door). In this paper, the design of the robot is presented, including the overall structure of the robot and the design details of the actuated robotic leg joints. For the motion control of the robot, a joint trajectory generator is formulated, with the purpose of generating a stable walking gait to provide reliable support to its human user in the robot’s future application. The Q-HARP robot and its control system were experimentally tested, and the results demonstrated that the robot was able to provide a smooth gait during walking.

Read More

Journal of Mechanisms and Robotics Open Issues