Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Design of Torque-Compensated Mechanical Systems With Two Connected Identical Slider-Crank Mechanisms

Abstract

Balancing the torque of mechanisms designed to minimize the fluctuation of input shaft torque is an effective means of improving their dynamic performance. There are several ways of solving the problem: optimizing the distribution of the moving mass of the original mechanism; cam sub-systems that displace the balancing mass; cam-spring mechanisms; flywheels driven by noncircular gears; adding articulated dyads, linkages or redundant drivers. This paper addresses the problem of input torque compensation with the optimal connection of two identical slider-crank mechanisms. The acceleration and deceleration phases of the links of the slide-crank mechanism obviously change periodically, causing torque to fluctuate at the input shaft. The problem is how to connect two mechanisms in order to reduce the input torque. This is done by minimizing the root-mean-square value of the input torque of the combined linkages. Two schemes are considered: slider-crank mechanisms with sliders moving on the same side, and on opposite sides. The prime value of this study is that it proposes an analytically tractable solution for identifying the general dynamic properties of mechanisms. Based on the ratio of link lengths, the precise relations for optimal connection of identical slider-crank mechanisms, i.e., a connection that produces the minimum root-mean-square values of the input torque, are developed. The numerical simulations illustrate the efficiency of the suggested approach. Observations show that the best solutions from the point of view of input torque minimization are obtained for the value of the coupling angle of two mechanisms around 90 deg.

Read More

Journal of Mechanisms and Robotics Open Issues