Latest Papers

ASME Journal of Mechanisms and Robotics

  • Stable Inverse Dynamics for Feedforward Control of Nonminimum-Phase Underactuated Systems
    on January 25, 2023 at 12:00 am

    AbstractAn enhanced inverse dynamics approach is here presented for feedforward control of underactuated multibody systems, such as mechanisms or robots where the number of independent actuators is smaller than the number of degrees of freedom. The method exploits the concept of partitioning the independent coordinates into actuated and unactuated ones (through a QR-decomposition) and of linearly combined output, to obtain the internal dynamics of the nonminimum-phase system and then to stabilize it through proper output redefinition. Then, the exact algebraic model of the actuated sub-system is inverted, leading to the desired control forces with just minor approximations and no need for pre-actuation. The effectiveness of the proposed approach is assessed by three numerical test cases, by comparing it with some meaningful benchmarks taken from the literature. Finally, experimental verification through an underactuated robotic arm with two degrees of freedom is performed.

Deployable Euler Spiral Connectors


Deployable Euler spiral connectors (DESCs) are introduced as compliant deployable flexures that can span gaps between segments in a mechanism and then lay flat when under strain in a stowed position. This paper presents models of Euler spiral beams combined in series and parallel that can be used to design compact compliant mechanisms. Constraints on the flexure parameters of DESCs are also presented. Analytic models developed for the force-deflection behavior and stress were compared to finite element analysis and experimental data. A spinal implant and a linear ratcheting system are presented as illustrative applications of DESCs.

Read More

Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy