Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Design Control and Performance of a Cable-Driving Module With External Encoder and Force Sensor for Cable-Driven Parallel Robots

Abstract

Cable-driven parallel robots (CDPRs) have the characteristic of easy deployment, which endows CDPRs with flexible workspace, freely configurable degrees-of-freedom (DOFs), and various configurations, greatly expanding their range of applications. Modular design provides excellent convenience and feasibility for deployment, which is a crucial issue of CDPR design. A highly integrated cable-driving module is designed in this paper, which includes the winding bobbin, servo motor, force sensor, external encoder, electromagnetic brake, as well as other devices. Experiments show that the maximum cable length control error is less than 0.16%, and the maximum cable tension control error is less than 8% in the back-and-forward rotation test. Furthermore, a CDPR with eight cables and six DOFs is constructed rapidly using the proposed module, whose dimension is 850 × 850 × 650 mm3. Results show that the robot’s trajectory errors are all less than 4.5 mm, and the root-mean-square-error (RMSE) is 2.1 mm. Besides, the compliance control experiments show that the robot’s tracking error in an impedance control mode is less than 2 mm, and the RMSE is 0.95 mm. Moreover, the dragging force in a teaching mode is less than 2.5 N. The proposed integrated cable-driving module could be helpful for the modular design and deployment of CDPRs.
Read More
Journal of Mechanisms and Robotics Open Issues