Latest Papers

ASME Journal of Mechanisms and Robotics

  • Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
    by Audet JM, Gosselin C. on July 21, 2021 at 12:00 am

    AbstractIn this paper, the concept of underactuated redundancy is presented using a novel spatial two-degrees-of-freedom (2-DoF) gravity-balanced rotational manipulator, composed of movable counterweights. The proposed kinematic arrangement makes it possible to intuitively manipulate a payload undergoing 3-DoF spatial rotations by adding a third rotational axis oriented in the direction of gravity. The static equilibrium equations of the 2-DoF architecture are first described in order to provide the required configuration of the counterweights for a statically balanced mechanism. A method for calibrating the mechanism, which establishes the coefficients of the static equilibrium equations, is also presented. In order to both translate and rotate the payload during manipulation, the rotational manipulator is mounted on an existing translational manipulator. Experimental validations of both systems are presented to demonstrate the intuitive and responsive behavior of the manipulators during physical human–robot interactions.

  • Special Section: Mobile Robots and Unmanned Ground Vehicles
    by Reina G, Das TK, Quaglia G, et al. on July 21, 2021 at 12:00 am

    Inspired by the fifth-year anniversary celebration of the homonymous symposium at the International Mechanical Engineering Congress & Exposition (IMECE), this Special Section with ten articles shares the latest research efforts in design, theory, development, and applications for mobile robots and unmanned ground vehicles.

Wireless Multiplexing Control Based on Magnetic Coupling Resonance and Its Applications in Robot

Abstract

Nowadays, more and more researchers are pursuing miniaturized and lightweight structure of robots. However, robots with multiple actuators require large control systems if each actuator needs to be controlled independently. In addition, the cables and circuits for control and power supply are the obstacles in reducing size and weight. In this article, a wireless multiplexing control system based on magnetic coupling resonance (MCR) is proposed. The control system can realize wireless energy transmission and control simultaneously. By decomposing a composite signal, it can control multiple actuators with only one input signal. However, in previous researches, their applications are primary and simple due to the switch control without feedback and the lack of systematic design method for robot application. Thus, based on the discrete form of composite signal, the closed-loop of wireless multiplexing control is presented, which makes this promising method a step closer to the practical application. Besides, based on the theoretical model of load power and transmission efficiency, five parameters to be optimized are extracted in accordance with the actual design requirements. The optimization algorithm for load power is proposed using particle swarm optimization (PSO). As for its applications in robots, a Delta robot with flexible linkage and an untethered multidrive pipe robot for sampling operation are designed to demonstrate the proposed control method. The experiment results of the Delta robot show the reliability and accuracy of the system, while the results of the pipe robot prove its potential use in the untethered robot system.
Read More
Journal of Mechanisms and Robotics Open Issues