Latest Papers

ASME Journal of Mechanisms and Robotics

  • Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
    by Audet JM, Gosselin C. on July 21, 2021 at 12:00 am

    AbstractIn this paper, the concept of underactuated redundancy is presented using a novel spatial two-degrees-of-freedom (2-DoF) gravity-balanced rotational manipulator, composed of movable counterweights. The proposed kinematic arrangement makes it possible to intuitively manipulate a payload undergoing 3-DoF spatial rotations by adding a third rotational axis oriented in the direction of gravity. The static equilibrium equations of the 2-DoF architecture are first described in order to provide the required configuration of the counterweights for a statically balanced mechanism. A method for calibrating the mechanism, which establishes the coefficients of the static equilibrium equations, is also presented. In order to both translate and rotate the payload during manipulation, the rotational manipulator is mounted on an existing translational manipulator. Experimental validations of both systems are presented to demonstrate the intuitive and responsive behavior of the manipulators during physical human–robot interactions.

  • Special Section: Mobile Robots and Unmanned Ground Vehicles
    by Reina G, Das TK, Quaglia G, et al. on July 21, 2021 at 12:00 am

    Inspired by the fifth-year anniversary celebration of the homonymous symposium at the International Mechanical Engineering Congress & Exposition (IMECE), this Special Section with ten articles shares the latest research efforts in design, theory, development, and applications for mobile robots and unmanned ground vehicles.

Experimentally Identified Models of McKibben Soft Actuators as Primary Movers and Passive Structures

Abstract

Soft robots join body and actuation, forming their structure from the same elements that induce motion. Soft actuators are commonly modeled or characterized as primary movers, but their second role as support structure introduces strain–pressure combinations outside of normal actuation. This article examines a more complete set of possible strain–pressure combinations for McKibben actuators, including passive or unpressurized, deformation, pressurized extension and compression of a pressurized actuator beyond the maximum actuation strain. Each region is investigated experimentally, and empirical force–displacement–pressure relationships are identified. Particular focus is placed on ensuring that empirical relationships are consistent at boundaries between an actuator’s strain–pressure regions. The presented methodology is applied to seven McKibben actuator designs, which span variations in wall thickness, enclosure material, and actuator diameter. Empirical results demonstrate a trade-off between maximum contraction strain and force required to passively extend. The results also show that stiffer elastomers require an extreme increase in pressure to contract without a compensatory increase in maximum achieved force. Empirical force–displacement–pressure models were developed for each variant across all the studied strain–pressure regions, enabling future design variation studies for soft robots that use actuators as structures.
Read More
Journal of Mechanisms and Robotics Open Issues