Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Autonomous Docking of Hybrid-Wheeled Modular Robots With an Integrated Active Genderless Docking Mechanism

Abstract

This paper presents a self-reconfigurable modular robot with an integrated two degrees-of-freedom (DOF) active docking mechanism. Active docking in modular robotic systems has received a lot of interest recently as it allows small versatile robotic systems to coalesce and achieve the structural benefits of large systems. This feature enables reconfigurable modular robotic systems to bridge the gap between small agile systems and larger robotic systems. The proposed self-reconfigurable mobile robot design exhibits dual mobility using a tracked drive for longitudinal locomotion and a wheeled drive for lateral locomotion. The 2-DOF docking interface allows for efficient docking while tolerating misalignments. To aid autonomous docking, visual marker-based tracking is used to detect and re-position the source robot relative to the target robot. The tracked features are then used in Image-Based Visual Servoing to bring the robots close enough for the docking procedure. The hybrid-tracking algorithm allows eliminating external pixelated noise in the image plane resulting in higher tracking accuracy along with faster frame update on a low-cost onboard computational device. This paper presents the overall mechanical design and the integration details of the modular robotic module with the docking mechanism. An overview of the autonomous tracking and docking algorithm is presented along with a proof-of-concept real-world demonstration of autonomous docking and self-reconfigurability. Experimental results to validate the robustness of the proposed tracking method, as well as the reliability of the autonomous docking procedure, are also presented.
Read More
Journal of Mechanisms and Robotics Open Issues