Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

A Simple Physical Model for Control of an Propellerless Aquatic Robot

Abstract

This paper is concerned with the motion of an aquatic robot whose body has the form of a sharp-edged foil. The robot is propelled by rotating the internal rotor without shell deformation. The motion of the robot is described by a finite-dimensional mathematical model derived from physical considerations. This model takes into account the effect of added masses and viscous friction. The parameters of the model are calculated from comparison of experimental data and numerical solution to the equations of rigid body motion and the Navier–Stokes equations. The proposed mathematical model is used to define controls implementing straight-line motion, motion in a circle, and motion along a complex trajectory. Experiments for estimation of the efficiency of the model have been conducted.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy