Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Cosimulation and Control of a Single-Wheel Pendulum Mobile Robot

Abstract

Cosimulation is widely used as a powerful tool for performance evaluation of systems design. This approach presents advantages over traditional design methodologies for saving money and time in the development process and the possibility of evaluating rapidly design alternatives by using virtual prototypes. This article presents an adams/matlab cosimulation for the dynamics and control of a Single-Wheel pendulum ROBot (SWROB) with inertial locomotion actuation to characterize design solutions by means of validation of analytical results. The obtained results by the proposed cosimulation show a significant performance based on the analytical and programming efforts in characterizing and simulating the designed system model. Moreover, open-loop experimental results are presented to validate both the analytical model and the virtual prototype.
Read More
Journal of Mechanisms and Robotics Open Issues