Latest Papers

ASME Journal of Mechanisms and Robotics

  • A Small-Scale Integrated Jumping-Crawling Robot: Design, Modeling, and Demonstration
    on June 16, 2025 at 12:00 am

    AbstractThe small jumping-crawling robot improves its obstacle-crossing ability by selecting appropriate locomotion methods. However, current research on jumping-crawling robots remains focused on enhancing specific aspects of performance, and several issues still exist, including nonadjustable gaits, poor stability, nonadjustable jumping posture, and poor motion continuity. This article presents a small jumping-crawling robot with decoupled jumping and crawling mechanisms, offline adjustable gaits, autonomous self-righting, autonomous steering, and certain slope-climbing abilities. The crawling mechanism adopts a partially adjustable Klann six-bar linkage, which can generate four stride lengths and three gaits. The jumping mechanism is designed as a six-bar linkage with passive compliance, and an active clutch allows energy storage and release in any state. The autonomous self-righting mechanism enables the robot to self-right after tipping over, meanwhile providing support, steering, and posture adjustment functions. Prototype experiments show that the designed robot demonstrates good motion stability and can climb a 45 deg slope without tipping over. The robot shows excellent steering performance, with a single action taking 5 s and achieving a steering angle of 11.5 deg. It also exhibits good motion continuity, with an average recovery time of 12 s to return to crawling mode after a jump. Crawling experiments on rough terrain demonstrate the feasibility of applying the designed robot in real-world scenarios.

Cosimulation and Control of a Single-Wheel Pendulum Mobile Robot

Abstract

Cosimulation is widely used as a powerful tool for performance evaluation of systems design. This approach presents advantages over traditional design methodologies for saving money and time in the development process and the possibility of evaluating rapidly design alternatives by using virtual prototypes. This article presents an adams/matlab cosimulation for the dynamics and control of a Single-Wheel pendulum ROBot (SWROB) with inertial locomotion actuation to characterize design solutions by means of validation of analytical results. The obtained results by the proposed cosimulation show a significant performance based on the analytical and programming efforts in characterizing and simulating the designed system model. Moreover, open-loop experimental results are presented to validate both the analytical model and the virtual prototype.
Read More
Journal of Mechanisms and Robotics Open Issues