Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Balance Recovery Based on Whole-Body Control Using Joint Torque Feedback for Quadrupedal Robots


In legged locomotion, the contact force between a robot and the ground plays a crucial role in balancing the robot. However, in quadrupedal robots, general whole-body controllers generate feed-forward force commands without considering the actual torque or force feedback. This paper presents a whole-body controller using the actual joint torque measured from a torque sensor, which enables the quadrupedal robot to demonstrate both dynamic locomotion and reaction to external disturbances. We compute external joint torque using the measured joint torque and the robot’s dynamics, and then we transform this to the moment of the center of mass (CoM). Using the computed CoM moment, the moment-based impedance controller distributes a feed-forward force corresponding to the desired moment of the CoM to stabilize the robot’s balance. Furthermore, to recover balance, the CoM motion is generated using capture point-based stepping control and zero moment point trajectory. The proposed whole-body controller was tested on a quadrupedal robot, named AiDIN-VI. Locomotive abilities on uneven terrains and slopes and in the presence of external disturbances are verified through experiments.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy