Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Folding Process Planning of Rigid Origami Using the Explicit Expression and Rapidly Exploring Random Tree Method


In this study, we propose a novel method for planning the folding process of a rigid origami mechanism, i.e., we explore the intermediate process of the mechanism from an initial state to a target state without self-intersection via a path-finding algorithm. A typical problem associated with a path-finding algorithm is that a feasible configuration space of rigid origami is a lower-dimensional subset of the entire parameter space. When all the folding angles are considered as free parameters to plan the folding process, it is generally not possible to obtain a feasible configuration via sampling. In this study, the parameters corresponding to the degree-of-freedom (DOF) are used as independent variables, and the remaining fold angles are considered as dependent variables that can be calculated via the explicit expression method (EEM). First, we explain the method for choosing the parameters related to DOF to represent the configuration of the origami mechanism. Then, we show the procedure for selecting a valid configuration from many possible configurations computed via EEM. For this purpose, we introduce criteria for each vertex to determine whether the two configurations can be continuously connected. Next, the method for planning the folding process of rigid origami is introduced via the rapidly exploring random tree (RRT) method. Finally, we implemented the folding process simulation platform and applied it to different patterns. The results of the experiments are presented.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy