Latest Papers

ASME Journal of Mechanisms and Robotics

  • Design of Reconfigurable Articulated Walking Mechanisms for Diverse Motion Behaviors
    on March 20, 2025 at 12:00 am

    AbstractLegged robots are able to move across irregular terrains and those based on 1-degree-of-freedom planar linkages can be energy efficient but are often constrained by a limited range of gaits which can limit their locomotion capabilities considerably. This article reports the design of novel reconfigurable parallel linkages that not only produce different walking patterns but also realize behaviors beyond locomotion. Experiments with an implemented wearable device able to guide the lower extremity through multiple human-like walking trajectories are presented and the preliminary results validate the proposed approach.

  • Modeling, Kinematics, and Dynamics of a Rigid-Flexible Coupling Spring-Cable-Driven Parallel Robot
    on March 20, 2025 at 12:00 am

    AbstractConventional parallel robots are made of rigid materials for the purpose of fast and accurate localization, exhibiting limited performance in large-scale operations. Inspired by the softness and natural compliance of biological systems, this article proposes a rigid-flexible coupling cable-driven parallel robot. The concept of flexible cable and spring hybrid and working principle are introduced. The kinematics of single module and multiple modules connected in series are analyzed and equations are given, and the Lagrange equation is used to establish dynamic models. Finally, two methods are used to validate the kinematics and dynamics. One is to draw the specific structure with the posture of the end-effector and measure the cable length to compare it with the analytical solution in the kinematic model. The other is to build the structure and joint characteristics in simulink, given the posture of the end-effector and the external force/torque, the cable length and the force applied are compared with those obtained from the dynamic model. The reasonableness of the mechanism and the feasibility of the kinematic and dynamic models are verified.

Folding Process Planning of Rigid Origami Using the Explicit Expression and Rapidly Exploring Random Tree Method

Abstract

In this study, we propose a novel method for planning the folding process of a rigid origami mechanism, i.e., we explore the intermediate process of the mechanism from an initial state to a target state without self-intersection via a path-finding algorithm. A typical problem associated with a path-finding algorithm is that a feasible configuration space of rigid origami is a lower-dimensional subset of the entire parameter space. When all the folding angles are considered as free parameters to plan the folding process, it is generally not possible to obtain a feasible configuration via sampling. In this study, the parameters corresponding to the degree-of-freedom (DOF) are used as independent variables, and the remaining fold angles are considered as dependent variables that can be calculated via the explicit expression method (EEM). First, we explain the method for choosing the parameters related to DOF to represent the configuration of the origami mechanism. Then, we show the procedure for selecting a valid configuration from many possible configurations computed via EEM. For this purpose, we introduce criteria for each vertex to determine whether the two configurations can be continuously connected. Next, the method for planning the folding process of rigid origami is introduced via the rapidly exploring random tree (RRT) method. Finally, we implemented the folding process simulation platform and applied it to different patterns. The results of the experiments are presented.
Read More
Journal of Mechanisms and Robotics Open Issues