Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Dexterity Analysis Based on Jacobian and Performance Optimization for Multi-Segment Continuum Robots

Abstract

This paper focuses on the performance analysis of multi-segment continuum robots, including reachable workspace and dexterity performance. Since excellent dexterity is an important feature of continuum robots, two local indices inspired by separating robotic Jacobian matrix, namely axiality and angularity dexterity, are introduced to explore the dexterity. Then, a Monte Carlo Method is adopted to simulate the distribution of local dexterity over the workspace. On this basis, the corresponding global indices in axiality and angularity are defined to assess global dexterity performance. To investigate the optimal kinematic performance, an objective function related to the segment lengths is designed under the consideration of reachable workspace and dexterity performance. Finally, Particle Swarm Optimization (PSO) algorithm is used to solve this optimization problem successfully. The optimal length distributions for two-segment and three-segment continuum robots are discovered. Most importantly, it is found that our method can also apply to general multi-segment continuum robots.
Read More
Journal of Mechanisms and Robotics Open Issues