Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Computation of the Available Force Set of a 3- RP RR Kinematically Redundant Planar Parallel Manipulator

Abstract

An algorithm is developed to determine the available force set (AFS) of the 3-RPRR kinematically redundant planar parallel manipulator. The results of the algorithm are verified against a brute force approach and are found to yield exact results with significantly less computational time. The use of the AFS in a robot design context is illustrated through the analysis of two performance indices: the maximum pure force capable of being applied in any direction and the maximum pure force capable of being applied in a given direction. The algorithm is used to compute the AFS and the performance indices throughout the 3-RPRR robot’s workspace. The proposed methodology is a useful tool for the design and analysis of the 3-RPRR robot and could be adapted to other kinematically redundant planar parallel manipulators.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy