Latest Papers

ASME Journal of Mechanisms and Robotics

    A New Cam-Follower Safety Joint Mechanism Design Based on Variable-Length Four-Bar Linkage for Robot Safety


    Humans come into physical contact with various machines such as robots in daily life. This leads to the underlying issue of guaranteeing safety during such human-robot interactions. Thus, many devices and methods have been studied for impact damage reduction. A safety joint mechanism (SJM) using four-bar linkages has been highlighted as an impact cutoff device owing to its capabilities of nonlinear load transfer. This paper focuses on a new design and testing for a kinematic element of an SJM based on four-bar linkages to improve the impact cutoff performances. In the present work, a set of variable-length floating link designs is proposed, and the mechanism is implemented by mechanical contact surface profile shaping between the cams and followers. The performance of the cam-follower mechanism is evaluated depending on the variable length of the floating link, by using the equivalent stiffness method, which successfully quantifies the performance of the proposed mechanism. Based on this design and analysis, two SJMs having symmetrical arrangements for four numbers of cam-follower mechanisms are fabricated: one SJM has fixed-length floating links and the other has variable-length floating links. The effect of the new kinematic elements on the performance improvement is verified by comparing the absorbed impact rates of the two SJMs by impact hammer-like drop tests. Consequently, it is confirmed that the rapid length change of the floating link is the core element for improving the performance of the safety mechanism.
    Read More
    Journal of Mechanisms and Robotics Open Issues