Latest Papers

ASME Journal of Mechanisms and Robotics

  • An Improved Dual Quaternion Dynamic Movement Primitives-Based Algorithm for Robot-Agnostic Learning and Execution of Throwing Tasks
    on May 9, 2025 at 12:00 am

    AbstractInspired by human nature, roboticists have conceived robots as tools meant to be flexible, capable of performing a wide variety of tasks. Learning from demonstration methods allow us to “teach” robots the way we would perform tasks, in a versatile and adaptive manner. Dynamic movement primitives (DMP) aims for learning complex behaviors in such a way, representing tasks as stable, well-understood dynamical systems. By modeling movements over the SE(3) group, modeled primitives can be generalized for any robotic manipulator capable of full end-effector 3D movement. In this article, we present a robot-agnostic formulation of discrete DMP based on the dual quaternion algebra, oriented to modeling throwing movements. We consider adapted initial and final poses and velocities, all computed from a projectile kinematic model and from the goal at which the projectile is aimed. Experimental demonstrations are carried out in both a simulated and a real environment. Results support the effectiveness of the improved method formulation.

  • Chained Timoshenko Beam Constraint Model With Applications in Large Deflection Analysis of Compliant Mechanism
    on May 9, 2025 at 12:00 am

    AbstractAccurately analyzing the large deformation behaviors of compliant mechanisms has always been a significant challenge in the design process. The classical Euler–Bernoulli beam theory serves as the primary theoretical basis for the large deformation analysis of compliant mechanisms. However, neglecting shear effects may reduce the accuracy of modeling compliant mechanisms. Inspired by the beam constraint model, this study takes a step further to develop a Timoshenko beam constraint model (TBCM) for initially curved beams to capture intermediate-range deflections under beam-end loading conditions. On this basis, the chained Timoshenko beam constraint model (CTBCM) is proposed for large deformation analysis and kinetostatic modeling of compliant mechanisms. The accuracy and feasibility of the proposed TBCM and CTBCM have been validated through modeling and analysis of curved beam mechanisms. Results indicate that TBCM and CTBCM are more accurate compared to the Euler beam constraint model (EBCM) and the chained Euler beam constraint model (CEBCM). Additionally, CTBCM has been found to offer computational advantages, as it requires fewer discrete elements to achieve convergence.

A Calibration Method for Enhancing Robot Accuracy Through Integration of Kinematic Model and Spatial Interpolation Algorithm

Abstract

Industrial robots are finding their niche in the field of machining due to their advantages of high flexibility, good versatility, and low cost. However, limited by the low absolute positioning accuracy, there are still huge obstacles in high-precision machining processes such as grinding. Aiming at this problem, a compensation method combining analytical modeling for quantitative errors with spatial interpolation algorithm for random errors is proposed based on the full consideration of the source and characteristics of positioning errors. First, as for the quantitative errors, namely geometric parameter and compliance error in this paper, a kinematics-based error model is constructed taking the coupling effect of errors into consideration. Then avoiding the impact of random errors, the extended Kalman filtering (EKF) algorithm is adopted to identify the error parameters. Second, based on the similarity principle of spatial error, spatial interpolation algorithm is used to model the residual error caused by temperature, gear clearance, etc. Based on the spatial anisotropy characteristics of robot motion performance, an adaptive mesh division algorithm was proposed to balance the accuracy and efficiency of mesh division. Then, an inverse distance weighted interpolation algorithm considering the influence degree of different joints on the end position was established to improve the approximation accuracy of residual error. Finally, the rough-fine two-stage serial error compensation method was carried out. Experimental results show that the mean absolute positioning accuracy is improved from 1.165 mm to 0.106 mm, which demonstrates the effectiveness of the method in this paper.
Read More
Journal of Mechanisms and Robotics Open Issues