Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dual Quaternions Representation of Lagrange's Dynamic Equations
    on June 5, 2023 at 12:00 am

    AbstractThis paper introduces for the first time, the Lagrange's dynamic equations in dual number quaternion form. Additionally, Rayleigh's dissipation function in dual quaternion form is introduced here allowing for the accounting of dissipative (non-conservative) forces such as motion through a viscous fluid, friction, and spring damping force. As an example, dual quaternions are used here to derive the Lagrange dynamic equations of a robot manipulator.

  • Geometric Error Calibration of XYZ -3RPS Hybrid Kinematic Machine via Binocular Vision
    on June 5, 2023 at 12:00 am

    AbstractTo improve the motion accuracy of an XYZ-3RPS hybrid kinematic machine (HKM), a geometric error calibration method via binocular vision measurement is studied. First, to separately calibrate the series kinematic mechanisms (SKMs) and parallel kinematic mechanisms (PKMs), the geometric error identification equations (GEIEs) of the XYZ SKM and 3RPS PKM are derived, respectively. By analyzing the different influence principles of the geometric errors on the position and attitude of the 3RPS PKM, a constraint function is added to the GEIE of the PKM to improve the calculation accuracy. Moreover, the geometric error compensation strategy is based on the structural characteristics of the XYZ-3RPS HKM. In addition, based on the principle of binocular vision measurement, two calibration plates, called dynamic and static calibration plates, are designed as markers to define the coordinate systems, enabling the acquisition of full positions and attitudes. Furthermore, a marker transformation method and an in-situ adjustment method are designed to determine the positions and attitudes of the HKM required for calibration such that the marker is always at the center of the field of view of the camera to improve measurement accuracy. Finally, the effectiveness of the calibration method is verified through prototype experiments.

  • Design of Position Estimator for Rope Driven Micromanipulator of Surgical Robot Based on Parameter Autonomous Selection Model
    on June 5, 2023 at 12:00 am

    AbstractAs the micromanipulator of surgical robots works in a narrow space, it is difficult to install any position sensors at the end, so the position control and position detection cannot be accurately performed. A position estimator based on the parameter autonomous selection model is proposed to estimate the end position indirectly. First, a single joint principle prototype and a position estimator model are established through the 4DOF driving scheme of the micromanipulator and the cable-driven model. Second, the proposed parameter change model is combined with the parameter selection method to form a parameter autonomous selection model. Finally, a position estimator based on the parameter autonomous selection model is established. The experimental results show the maximum estimation error of the position estimator is 0.1928 deg. Compared with other position estimation methods, the position estimator proposed in this paper has higher accuracy and better robustness, which lays a foundation for the full closed-loop control of micromanipulator position.

  • Kinematic Modeling and Open-Loop Control of a Twisted String Actuator-Driven Soft Robotic Manipulator
    on June 5, 2023 at 12:00 am

    AbstractRealizing high-performance soft robots is challenging because many existing soft or compliant actuators exhibit limitations like fabrication complexity, high power requirement, slow actuation, and low force generation. Due to their high-force output and power efficiency, compactness, and simplicity in fabrication, twisted string actuators (TSAs) have exhibited strong potential in mechatronic and robotic applications. However, they have had limited uses in soft robotics. Consequently, modeling and control of TSA-driven soft robots have not been sufficiently studied. This article presents the first study on the modeling and control of a TSA-driven soft robotic manipulator. A physics-based model was developed to predict the manipulator’s kinematic motion. An inverse model was derived to realize open-loop control. Models that describe the behavior of TSAs were utilized in a novel way to develop the proposed kinematic and inverse models of the soft robot. The proposed modeling and control approaches were experimentally verified to be effective. For example, the modeling and control errors of the bending angle were 1.60 deg (3.11%) and 2.11 deg (3.68%), respectively.

A Calibration Method for Enhancing Robot Accuracy Through Integration of Kinematic Model and Spatial Interpolation Algorithm

Abstract

Industrial robots are finding their niche in the field of machining due to their advantages of high flexibility, good versatility, and low cost. However, limited by the low absolute positioning accuracy, there are still huge obstacles in high-precision machining processes such as grinding. Aiming at this problem, a compensation method combining analytical modeling for quantitative errors with spatial interpolation algorithm for random errors is proposed based on the full consideration of the source and characteristics of positioning errors. First, as for the quantitative errors, namely geometric parameter and compliance error in this paper, a kinematics-based error model is constructed taking the coupling effect of errors into consideration. Then avoiding the impact of random errors, the extended Kalman filtering (EKF) algorithm is adopted to identify the error parameters. Second, based on the similarity principle of spatial error, spatial interpolation algorithm is used to model the residual error caused by temperature, gear clearance, etc. Based on the spatial anisotropy characteristics of robot motion performance, an adaptive mesh division algorithm was proposed to balance the accuracy and efficiency of mesh division. Then, an inverse distance weighted interpolation algorithm considering the influence degree of different joints on the end position was established to improve the approximation accuracy of residual error. Finally, the rough-fine two-stage serial error compensation method was carried out. Experimental results show that the mean absolute positioning accuracy is improved from 1.165 mm to 0.106 mm, which demonstrates the effectiveness of the method in this paper.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy