Latest Papers

ASME Journal of Mechanisms and Robotics

  • Investigation on a Class of 2D Profile Amplified Stroke Dielectric Elastomer Actuators
    on September 24, 2024 at 12:00 am

    AbstractDielectric elastomer actuators (DEAs) have been widely studied in soft robotics due to their muscle-like movements. Linear DEAs are typically tensioned using compression springs with positive stiffness or weights directly attached to the flexible film of the DEA. In this paper, a novel class of 2D profile linear DEAs (butterfly- and X-shaped linear DEAs) with compact structure is introduced, which, employing negative-stiffness mechanisms, can largely increase the stroke of the actuators. Then, a dynamic model of the proposed amplified-stroke linear DEAs (ASL-DEAs) is developed and used to predict the actuator stroke. The fabrication process of linear DEAs is presented. This, using compliant joints, 3D-printed links, and dielectric elastomer, allows for rapid and affordable production. The experimental validation of the butterfly- and X-shaped linear DEAs proved capable of increasing the stroke up to 32.7% and 24.0%, respectively, compared with the conventional design employing springs and constant weights. Finally, the dynamic model is validated against the experimental data of stroke amplitude and output force; errors smaller than 10.5% for a large stroke amplitude (60% of maximum stroke) and 10.5% on the output force are observed.

Genetic Algorithm-Based Optimal Design of a Rolling-Flying Vehicle

Abstract

This work describes a design optimization framework for a rolling-flying vehicle consisting of a conventional quadrotor configuration with passive wheels. For a baseline comparison, the optimization approach is also applied for a conventional (flight-only) quadrotor. Pareto-optimal vehicles with maximum range and minimum size are created using a hybrid multi-objective genetic algorithm in conjunction with multi-physics system models. A low Reynolds number blade element momentum theory aerodynamic model is used with a brushless DC motor model, a terramechanics model, and a vehicle dynamics model to simulate the vehicle range under any operating angle-of-attack and forward velocity. To understand the tradeoff between vehicle size and operating range, variations in Pareto-optimal designs are presented as functions of vehicle size. A sensitivity analysis is used to better understand the impact of deviating from the optimal vehicle design variables. This work builds on current approaches in quadrotor optimization by leveraging a variety of models and formulations from the literature and demonstrating the implementation of various design constraints. It also improves upon current ad hoc rolling-flying vehicle designs created in previous studies. Results show the importance of accounting for oft-neglected component constraints in the design of high-range quadrotor vehicles. The optimal vehicle mechanical configuration is shown to be independent of operating point, stressing the importance of a well-matched, optimized propulsion system. By emphasizing key constraints that affect the maximum and nominal vehicle operating points, an optimization framework is constructed that can be used for rolling-flying vehicles and conventional multi-rotors.
Read More
Journal of Mechanisms and Robotics Open Issues