Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Direct Position Analysis of a Particular Translational 3-URU Manipulator

Abstract

Direct position analysis (DPA) of parallel manipulators (PMs) is in general difficult to solve. Over on PMs’ topology, DPA complexity depends on the choice of the actuated joints. From an analytic point of view, the system of algebraic equations that one must solve to implement PMs’ DPA is usually expressible in an apparently simple form, but such a form does not allow an analytic solution and even the problem formalization is relevant in PMs’ DPAs. The ample literature on the DPA of Stewart platforms well documents this point. This paper addresses the DPA of a particular translational PM of 3-URU type, which has the actuators on the frame while the actuated joints are not adjacent to the frame. The problem formulation brings to a closure-equation system consisting of three irrational equations in three unknowns. Such a system is transformed into an algebraic system of four quadratic equations in four unknowns that yields a univariate irrational equation in one of the four unknowns and three explicit expressions of the remaining three unknowns. Then, an algorithm is proposed which is able to find only the real solutions of the DPA. The proposed solution technique can be applied to other DPAs reducible to a similar system of irrational equations and, as far as this author is aware, is novel.
Read More
Journal of Mechanisms and Robotics Open Issues