Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Human Temporomandibular Joint Motion: A Synthesis Approach for Designing a Six-Bar Kinematic Simulator

Abstract

The human earcanal can accommodate several types of in-ear devices including hearing aids, earphones, hearing protectors, and earplugs. This canal-type home has a neighbor called the temporomandibular joint (TMJ) whose movements slightly deform the shape of the earcanal. While these cyclic deformations can influence the positioning, comfort, and functioning of ear-fitted devices, they can also provide a significant amount of energy to harvest. Given their importance, the TMJ movements and earcanal deformations have been well studied. However, their mutual actions are still not fully understood. This paper presents the development of a six-bar kinematic TMJ simulator capable of replicating the complicated motion of the jaw. The development relies on a two-phase mechanism design algorithm to numerically optimize and analytically synthesize linkage mechanisms for which the classical optimization approaches cannot return a converged solution. The proposed algorithm enables the design of a kinematic simulator to generate the TMJ path with an average error as low as 1.65% while respecting all the hinge-axis parameters of the jaw. This algorithm can be subsequently used to solve nonlinear complex linkage synthesis problems, and ultimately, the developed kinematic simulator can be used to further investigate TMJ–earcanal interactions.
Read More
Journal of Mechanisms and Robotics Open Issues