Latest Papers

ASME Journal of Mechanisms and Robotics

  • Design of Reconfigurable Articulated Walking Mechanisms for Diverse Motion Behaviors
    on March 20, 2025 at 12:00 am

    AbstractLegged robots are able to move across irregular terrains and those based on 1-degree-of-freedom planar linkages can be energy efficient but are often constrained by a limited range of gaits which can limit their locomotion capabilities considerably. This article reports the design of novel reconfigurable parallel linkages that not only produce different walking patterns but also realize behaviors beyond locomotion. Experiments with an implemented wearable device able to guide the lower extremity through multiple human-like walking trajectories are presented and the preliminary results validate the proposed approach.

  • Modeling, Kinematics, and Dynamics of a Rigid-Flexible Coupling Spring-Cable-Driven Parallel Robot
    on March 20, 2025 at 12:00 am

    AbstractConventional parallel robots are made of rigid materials for the purpose of fast and accurate localization, exhibiting limited performance in large-scale operations. Inspired by the softness and natural compliance of biological systems, this article proposes a rigid-flexible coupling cable-driven parallel robot. The concept of flexible cable and spring hybrid and working principle are introduced. The kinematics of single module and multiple modules connected in series are analyzed and equations are given, and the Lagrange equation is used to establish dynamic models. Finally, two methods are used to validate the kinematics and dynamics. One is to draw the specific structure with the posture of the end-effector and measure the cable length to compare it with the analytical solution in the kinematic model. The other is to build the structure and joint characteristics in simulink, given the posture of the end-effector and the external force/torque, the cable length and the force applied are compared with those obtained from the dynamic model. The reasonableness of the mechanism and the feasibility of the kinematic and dynamic models are verified.

Untethered Microrobot Motion Mechanism With Increased Longitudinal Force

Abstract

The importance of an untethered microrobotic platform that can operate on high flowrate microfluidic channels for in vitro applications is increasing rapidly. This article presents a method to manipulate a microrobot in a fluidic chip when high flowrates (4 ml/min, 82.304 mm/s) are applied. This method is based on a novel permanent magnet-based diamagnetic levitation configuration. This configuration includes a thin layer of pyrolytic graphite, which is placed just below the microrobot. In this way, microrobot stability and manipulation capability are increased. Also, we aim to increase the longitudinal forces imposed on the microrobot to withstand the drag force proportional to the flowrate. Hence, magnetic field lines are generated more linearly around the microrobot by a different combination of permanent magnets. The proposed magnetic configuration, named “KERKAN configuration,” significantly improves the microrobot’s longitudinal forces. In this configuration, two different ring-shaped ferromagnetic magnets are used. One of the magnets has a smaller diameter than the other magnet. A combination of one smaller and one bigger magnet is placed above and below the microrobot. To validate the advantages of this configuration, analytical and simulation studies are conducted. Their results are then compared with experimental results. Experimental results are on par with analytical and simulation studies. KERKAN configuration has a lower displacement than the next best configuration at the highest flowrate we applied (relatively 3301 μm, %21.8).
Read More
Journal of Mechanisms and Robotics Open Issues