Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Singularity Loci, Bifurcated Evolution Routes, and Configuration Transitions of Reconfigurable Legged Mobile Lander From Adjusting, Landing, to Roving

Abstract

This paper presents the reconfigurable legged mobile lander (ReLML) with its modes from adjusting, landing, to roving. Based on the invented metamorphic variable-axis revolute hinge, the actuated link has three alternative phases of rotating around either of two orthogonal topological axes or locking itself to the base as a rigid body. This property enables the ReLML to switch among three modes and within two driving states (as the adjusting and roving modes are active mechanisms driven by motors, while the landing truss is regarded as a passive mechanism driven by the touchdown impact force exerted on footpad). The unified differential kinematics for the ReLML is established by the screw-based Jacobian modeling, unifying both active and passive operation phases throughout all modes. Afterward, the distributions of workspaces and singularity loci in three modes are discussed for the multi-solution sake, and the selection principle of the practicable solution pattern is proposed to obtain the actual workspace, singularity loci, and configurations. The results stemming from the Jacobian-matrix-based method and the Grassmann-geometry-based method give mutual authentication. Finally, as prospects for promising applications, four bifurcated evolution routes and configuration transitions are figured out and compared.
Read More
Journal of Mechanisms and Robotics Open Issues