Latest Papers

ASME Journal of Mechanisms and Robotics

  • Investigation on a Class of 2D Profile Amplified Stroke Dielectric Elastomer Actuators
    on September 24, 2024 at 12:00 am

    AbstractDielectric elastomer actuators (DEAs) have been widely studied in soft robotics due to their muscle-like movements. Linear DEAs are typically tensioned using compression springs with positive stiffness or weights directly attached to the flexible film of the DEA. In this paper, a novel class of 2D profile linear DEAs (butterfly- and X-shaped linear DEAs) with compact structure is introduced, which, employing negative-stiffness mechanisms, can largely increase the stroke of the actuators. Then, a dynamic model of the proposed amplified-stroke linear DEAs (ASL-DEAs) is developed and used to predict the actuator stroke. The fabrication process of linear DEAs is presented. This, using compliant joints, 3D-printed links, and dielectric elastomer, allows for rapid and affordable production. The experimental validation of the butterfly- and X-shaped linear DEAs proved capable of increasing the stroke up to 32.7% and 24.0%, respectively, compared with the conventional design employing springs and constant weights. Finally, the dynamic model is validated against the experimental data of stroke amplitude and output force; errors smaller than 10.5% for a large stroke amplitude (60% of maximum stroke) and 10.5% on the output force are observed.

Singularity Loci, Bifurcated Evolution Routes, and Configuration Transitions of Reconfigurable Legged Mobile Lander From Adjusting, Landing, to Roving

Abstract

This paper presents the reconfigurable legged mobile lander (ReLML) with its modes from adjusting, landing, to roving. Based on the invented metamorphic variable-axis revolute hinge, the actuated link has three alternative phases of rotating around either of two orthogonal topological axes or locking itself to the base as a rigid body. This property enables the ReLML to switch among three modes and within two driving states (as the adjusting and roving modes are active mechanisms driven by motors, while the landing truss is regarded as a passive mechanism driven by the touchdown impact force exerted on footpad). The unified differential kinematics for the ReLML is established by the screw-based Jacobian modeling, unifying both active and passive operation phases throughout all modes. Afterward, the distributions of workspaces and singularity loci in three modes are discussed for the multi-solution sake, and the selection principle of the practicable solution pattern is proposed to obtain the actual workspace, singularity loci, and configurations. The results stemming from the Jacobian-matrix-based method and the Grassmann-geometry-based method give mutual authentication. Finally, as prospects for promising applications, four bifurcated evolution routes and configuration transitions are figured out and compared.
Read More
Journal of Mechanisms and Robotics Open Issues