Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Application of Floquet Theory to Human Gait Kinematics and Dynamics


In this work, the lower extremity physiological parameters are recorded during normal walking gait, and the dynamical systems theory is applied to determine a stability analysis. The human walking gait pattern of kinematic and dynamical data is approximated to periodic behavior. The embedding dimension analysis of the kinematic variable’s time trace and use of Taken’s theorem allows us to compute a reduced-order time series that retains the essential dynamics. In conjunction with Floquet theory, this approach can help determine the system’s stability characteristics. The Lyapunov–Floquet (L-F) transformation application results in constructing an invariant manifold resembling the form of a simple oscillator system. It is also demonstrated that the simple oscillator system, when re-mapped back to the original domain, reproduces the original system’s time evolution (hip angle or knee angle, for example). A reinitialization procedure is suggested that improves the accuracy between the processed data and actual data. The theoretical framework proposed in this work is validated with the experiments using a motion capture system.
Read More
Journal of Mechanisms and Robotics Open Issues