Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Design and Prototyping of Rotational Bi-Stable Mechanism Using Permanent Magnets

Abstract

Diverse applications including switches, deployable structures, and reconfigurable robots can benefit from bi-stability characteristics. However, the complexity of the implementation and the limitation of the structural configuration makes it difficult to apply conventional bi-stable mechanisms to the structures that require rotational bi-stability. In this paper, an implementation method using cylindrical magnets for the rotational bi-stable mechanism is proposed. The proposed bi-stable mechanism consists of a revolute joint with two links. It has rotational bi-stability through the magnetic force relationship between the array of magnets on each link. To identify the characteristics of the proposed bi-stable mechanism, a cylindrical permanent magnet is considered as an electromagnet model that consists of one ring with a virtual electric current. The magnetic field of the cylindrical permanent magnet can be calculated using the Biot–Savart law. Similarly, the magnetic force between two cylindrical permanent magnets is calculated using the Lorentz force law. The criteria of the magnet array for symmetric bi-stability are described and the potential energy diagram of the rotation link is considered as the performance criterion to identify the stable state. The proposed bi-stable mechanism was applied to the prototype of a deployable structure consisting of two links. The load testing of the structure against external torque was performed and it was obtained that the rotation link can stay within 5 deg angle to the maximum load applied and was experimentally verified with good agreement.
Read More
Journal of Mechanisms and Robotics Open Issues