Latest Papers

ASME Journal of Mechanisms and Robotics

  • Design of Reconfigurable Articulated Walking Mechanisms for Diverse Motion Behaviors
    on March 20, 2025 at 12:00 am

    AbstractLegged robots are able to move across irregular terrains and those based on 1-degree-of-freedom planar linkages can be energy efficient but are often constrained by a limited range of gaits which can limit their locomotion capabilities considerably. This article reports the design of novel reconfigurable parallel linkages that not only produce different walking patterns but also realize behaviors beyond locomotion. Experiments with an implemented wearable device able to guide the lower extremity through multiple human-like walking trajectories are presented and the preliminary results validate the proposed approach.

  • Modeling, Kinematics, and Dynamics of a Rigid-Flexible Coupling Spring-Cable-Driven Parallel Robot
    on March 20, 2025 at 12:00 am

    AbstractConventional parallel robots are made of rigid materials for the purpose of fast and accurate localization, exhibiting limited performance in large-scale operations. Inspired by the softness and natural compliance of biological systems, this article proposes a rigid-flexible coupling cable-driven parallel robot. The concept of flexible cable and spring hybrid and working principle are introduced. The kinematics of single module and multiple modules connected in series are analyzed and equations are given, and the Lagrange equation is used to establish dynamic models. Finally, two methods are used to validate the kinematics and dynamics. One is to draw the specific structure with the posture of the end-effector and measure the cable length to compare it with the analytical solution in the kinematic model. The other is to build the structure and joint characteristics in simulink, given the posture of the end-effector and the external force/torque, the cable length and the force applied are compared with those obtained from the dynamic model. The reasonableness of the mechanism and the feasibility of the kinematic and dynamic models are verified.

A Mobile Mathieu Oscillator Model for Vibrational Locomotion of a Bristlebot

Abstract

Terrestrial locomotion that is produced by creating and exploiting frictional anisotropy is common amongst animals such as snakes, gastropods, and limbless lizards. In this paper we present a model of a bristlebot that locomotes by generating frictional anisotropy due to the oscillatory motion of an internal mass and show that this is equivalent to a stick–slip Mathieu oscillator. Such vibrational robots have been available as toys and theoretical curiosities and have seen some applications such as the well-known kilobot and in pipe line inspection, but much remains unknown about this type of terrestrial locomotion. In this paper, motivated by a toy model of a bristlebot made from a toothbrush, we derive a theoretical model for its dynamics and show that its dynamics can be classified into four modes of motion: purely stick (no locomotion), slip, stick–slip, and hopping. In the stick mode, the dynamics of the system are those of a nonlinear Mathieu oscillator and large amplitude resonance oscillations lead to the slip mode of motion. The mode of motion depends on the amplitude and frequency of the periodic forcing. We compute a phase diagram that captures this behavior, which is reminiscent of the tongues of instability seen in a Mathieu oscillator. The broader result that emerges in this paper is that mobile limbless continuum or soft robots can exploit high-frequency parametric oscillations to generate fast and efficient terrestrial motion.
Read More
Journal of Mechanisms and Robotics Open Issues