Latest Papers

ASME Journal of Mechanisms and Robotics

  • Measurement Configuration Optimization and Kinematic Calibration of a Parallel Robot
    by Huang C, Xie F, Liu X, et al. on December 10, 2021 at 12:00 am

    AbstractThis paper presents the kinematic calibration of a four-degrees-of-freedom (4DOF) high-speed parallel robot. In order to improve the calibration effect by decreasing the influence of the unobservable disturbance variables introduced by error measurement, a measurement configuration optimization method is proposed. Configurations are iteratively selected inside the workspace by a searching algorithm, then the selection results are evaluated through an index associated with the condition number of the identification Jacobian matrix; finally, the number of optimized configurations is determined. Since the selection algorithm has been shown to be sensitive to local minima, a meta-heuristic method has been applied to decrease this sensibility. To verify the effectiveness of the algorithm and kinematic calibration, computation validations, pose error estimations, and experiments are performed. The results show that the identification accuracy and calibration effect can be significantly improved by using the optimized configurations.

Synthesis of Planar Kinematic Chains With Prismatic Pairs Based on a Similarity Recognition Algorithm

Abstract

The structural synthesis of planar kinematic chains (KCs) with prismatic pairs (P-pairs) is the basis of innovating mechanisms containing P-pairs. In the literature, only a little research has been carried out to synthesize planar KCs with P-pairs. Moreover, these synthesis methods for KCs with P-pairs involve all possible combinations of edges, resulting in a large number of isomorphic KCs and a low synthesis efficiency. In this study, our previous similarity recognition algorithm is improved and applied to synthesize planar KCs with P-pairs. Only a small number of isomorphic KCs are generated in the synthesis process and the synthesis efficiency is greatly enhanced. Our method is applied to synthesize 9-link 2-DOF, 10-link 1-DOF, and 11-link 2-DOF KCs with one and two P-pairs. Our synthesis results are consistent with those of the existing literature. The present work is helpful to design mechanisms with P-pairs and can be extended to mechanisms with other types of kinematic pairs.
Read More
Journal of Mechanisms and Robotics Open Issues