Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Kinetostatic Modeling of Planar Compliant Mechanisms With Flexible Beams, Linear Sliders, Multinary Rigid Links, and Multiple Loops


This paper presents kinetostatic models of planar compliant mechanisms with multinary rigid links, multinary joints, sliders, and multiple loops based on the chained beam constraint model. The focus is on modeling of several building blocks of the beam type compliant mechanisms to aid in their design. The modeling approaches are based on the loop-closure equations and the static equilibrium conditions. Models of the multinary rigid links, multinary joints, and sliders are presented. As a result, the kinetostatic models of the compliant mechanisms can be systematically formulated by using these building blocks. Several mechanisms constructed by the building blocks are modeled and verified by finite element analyses. A case study is provided to demonstrate the application of the developed models. These models pave the way for versatile applications of the chained beam constraint model for the design and analysis of beam type planar compliant mechanisms.
Read More
Journal of Mechanisms and Robotics Open Issues