Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Kinetostatic Modeling of Dual-Drive H-Type Gantry With Exchangeable Flexure Joints


The flexure joints are proposed to replace the rigid assembly between the cross-arm and the moving carriages of dual-drive H-type gantry (DHG) for higher reliability and fine rotational alignments. In the literature, the flexure joint of the DHG is modeled as an ideal linear torsional spring, resulting in an inaccurate estimation of the cross-arm’s angle. In this study, a generalized analytical kinetostatic model of flexure-linked DHG is built by considering the geometric nonlinearities. The expressions of beam coefficients in the model are obtained from either beam constraint model (BCM) or Timoshenko BCM (TBCM) according to the given criterion of length-to-thickness ratio. The model is capable to accurately estimate any two variables among the rotation angle of the cross-arm, the misalignment of two carriages, and the net driving force, as long as the other is known. Simulations and experiments on the testbed validate the accuracy and show practical appeals of the proposed model.
Read More
Journal of Mechanisms and Robotics Open Issues