Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Control and Control Allocation for Bimodal, Rotary Wing, Rolling–Flying Vehicles


This paper presents a robust method for controlling the terrestrial motion of a bimodal multirotor vehicle that can roll and fly. Factors influencing the mobility and controllability of the vehicle are explored and compared to strictly flying multirotor vehicles; the differences motivate novel control and control allocation strategies that leverage the non-standard configuration of the bimodal design. A fifth-order dynamic model of the vehicle subject to kinematic rolling constraints is the basis for a nonlinear, multi-input, multi-output, sliding mode controller. Constrained optimization techniques are used to develop a novel control allocation strategy that minimizes power consumption while rolling. Simulations of the vehicle under closed-loop control are presented. A functional hardware embodiment of the vehicle is constructed onto which the controllers and control allocation algorithm are deployed. Experimental data of the vehicle under closed-loop control demonstrate good performance and robustness to parameter uncertainty. Data collected also demonstrate that the control allocation algorithm correctly determines a thrust-minimizing solution in real-time.
Read More
Journal of Mechanisms and Robotics Open Issues