Latest Papers

ASME Journal of Mechanisms and Robotics

  • Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
    by Audet JM, Gosselin C. on July 21, 2021 at 12:00 am

    AbstractIn this paper, the concept of underactuated redundancy is presented using a novel spatial two-degrees-of-freedom (2-DoF) gravity-balanced rotational manipulator, composed of movable counterweights. The proposed kinematic arrangement makes it possible to intuitively manipulate a payload undergoing 3-DoF spatial rotations by adding a third rotational axis oriented in the direction of gravity. The static equilibrium equations of the 2-DoF architecture are first described in order to provide the required configuration of the counterweights for a statically balanced mechanism. A method for calibrating the mechanism, which establishes the coefficients of the static equilibrium equations, is also presented. In order to both translate and rotate the payload during manipulation, the rotational manipulator is mounted on an existing translational manipulator. Experimental validations of both systems are presented to demonstrate the intuitive and responsive behavior of the manipulators during physical human–robot interactions.

  • Special Section: Mobile Robots and Unmanned Ground Vehicles
    by Reina G, Das TK, Quaglia G, et al. on July 21, 2021 at 12:00 am

    Inspired by the fifth-year anniversary celebration of the homonymous symposium at the International Mechanical Engineering Congress & Exposition (IMECE), this Special Section with ten articles shares the latest research efforts in design, theory, development, and applications for mobile robots and unmanned ground vehicles.

Design and Bending Analysis of a Metamorphic Parallel Twisted-Scissor Mechanism


The conventional scissor mechanism is used in modern engineering and robotic applications due to its metamorphic ability. The folding configuration provides space-saving and unfolding provides longer linear expansion capability. However, a conventional scissor suffers unexpected and uncontrolled large bending deformation due to low bending stiffness while unfolding configuration, which may damage its structure. It also has a sudden bending singularity during unfolding, which may also damage the actuator. These limitations impose a significant constraint on real-life applications such as foldable robot arms, space robot arms, and reconfigurable robots. In this paper, we proposed a multi-strands parallel twisted-scissor mechanism (PTSM) to enhance its usability. The PTSM is inspired by a rope structure and designed by introducing a metamorphic segment (MS) using the S-shaped linkage design approach to improve its bending stiffness without affecting conventional scissors’ fundamentals. The PTSM has a unique feature of several automatic-link locking mechanisms to avoid singularity without using additional sensors, mechanism, or control. We experimentally checked the proposed design’s functionality and its feasibility. We formulated a cantilever bending model for foldable PTSM with N metamorphic segments considering revolute joint clearance for bending estimation, experimentally verified, and analyzed the bending deformation in the X–Y and Y–Z planes. Also, it is compared with a conventional scissor. Finally, we found that PTSM is stronger than conventional scissor and can fold/unfold smoothly using a single linear actuator. PTSM can provide large linear displacement with small bending deformation without bending singularity.
Read More
Journal of Mechanisms and Robotics Open Issues