Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

A Distribution Method of Driving Torque for a Novel 3UPS-RR Redundant Solar Tracker


This paper proposes a novel two-axis solar tracker with a redundant parallel mechanism and investigates the distribution method of driving torque. In view of the difference between the singular configuration of the redundant parallel mechanisms and that of the corresponding non-redundant ones, an index related to the minimum singular value of the Jacobian matrix is used to indicate the position of the singular configuration relative to the boundaries of the required workspace. The driving torque and energy consumption can be optimized with this index. Based on the fact that the direction of driving torque is opposite to that of rotor in most of the running processes, a distribution method of driving torque with the minimum energy consumption for the redundant parallel solar tracker is proposed. The distribution method is compared with the minimum norm solution which is adopted by the conventional redundant parallel mechanism. And energy consumption can be significantly reduced by adopting this method. In addition, the workspace and energy consumption of the redundant solar tracker and its non-redundant counterpart are compared. The results show that the redundant solar tracker has a larger workspace and lower energy consumption.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy