Latest Papers

ASME Journal of Mechanisms and Robotics

  • Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
    by Audet JM, Gosselin C. on July 21, 2021 at 12:00 am

    AbstractIn this paper, the concept of underactuated redundancy is presented using a novel spatial two-degrees-of-freedom (2-DoF) gravity-balanced rotational manipulator, composed of movable counterweights. The proposed kinematic arrangement makes it possible to intuitively manipulate a payload undergoing 3-DoF spatial rotations by adding a third rotational axis oriented in the direction of gravity. The static equilibrium equations of the 2-DoF architecture are first described in order to provide the required configuration of the counterweights for a statically balanced mechanism. A method for calibrating the mechanism, which establishes the coefficients of the static equilibrium equations, is also presented. In order to both translate and rotate the payload during manipulation, the rotational manipulator is mounted on an existing translational manipulator. Experimental validations of both systems are presented to demonstrate the intuitive and responsive behavior of the manipulators during physical human–robot interactions.

  • Special Section: Mobile Robots and Unmanned Ground Vehicles
    by Reina G, Das TK, Quaglia G, et al. on July 21, 2021 at 12:00 am

    Inspired by the fifth-year anniversary celebration of the homonymous symposium at the International Mechanical Engineering Congress & Exposition (IMECE), this Special Section with ten articles shares the latest research efforts in design, theory, development, and applications for mobile robots and unmanned ground vehicles.

A Distribution Method of Driving Torque for a Novel 3UPS-RR Redundant Solar Tracker

Abstract

This paper proposes a novel two-axis solar tracker with a redundant parallel mechanism and investigates the distribution method of driving torque. In view of the difference between the singular configuration of the redundant parallel mechanisms and that of the corresponding non-redundant ones, an index related to the minimum singular value of the Jacobian matrix is used to indicate the position of the singular configuration relative to the boundaries of the required workspace. The driving torque and energy consumption can be optimized with this index. Based on the fact that the direction of driving torque is opposite to that of rotor in most of the running processes, a distribution method of driving torque with the minimum energy consumption for the redundant parallel solar tracker is proposed. The distribution method is compared with the minimum norm solution which is adopted by the conventional redundant parallel mechanism. And energy consumption can be significantly reduced by adopting this method. In addition, the workspace and energy consumption of the redundant solar tracker and its non-redundant counterpart are compared. The results show that the redundant solar tracker has a larger workspace and lower energy consumption.
Read More
Journal of Mechanisms and Robotics Open Issues