Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Multiparameter Real-World System Identification Using Iterative Residual Tuning

Abstract

In this work, we consider the problem of nonlinear system identification using data to learn multiple and often coupled parameters that allow a simulator to more accurately model a physical system or mechanism and close the so-called reality gap for more accurate robot control. Our approach uses iterative residual tuning (IRT), a recently developed derivative-free system identification technique that utilizes neural networks and visual observation to estimate parameter differences between a proposed model and a target model. We develop several modifications to the basic IRT approach and apply it to the system identification of a five-parameter model of a marble rolling in a robot-controlled labyrinth game mechanism. We validate our technique both in simulation—where we outperform two baselines—and on a real system, where we achieve marble tracking error of 4% after just five optimization iterations.
Read More
Journal of Mechanisms and Robotics Open Issues