Latest Papers

ASME Journal of Mechanisms and Robotics

  • Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
    by Audet JM, Gosselin C. on July 21, 2021 at 12:00 am

    AbstractIn this paper, the concept of underactuated redundancy is presented using a novel spatial two-degrees-of-freedom (2-DoF) gravity-balanced rotational manipulator, composed of movable counterweights. The proposed kinematic arrangement makes it possible to intuitively manipulate a payload undergoing 3-DoF spatial rotations by adding a third rotational axis oriented in the direction of gravity. The static equilibrium equations of the 2-DoF architecture are first described in order to provide the required configuration of the counterweights for a statically balanced mechanism. A method for calibrating the mechanism, which establishes the coefficients of the static equilibrium equations, is also presented. In order to both translate and rotate the payload during manipulation, the rotational manipulator is mounted on an existing translational manipulator. Experimental validations of both systems are presented to demonstrate the intuitive and responsive behavior of the manipulators during physical human–robot interactions.

  • Special Section: Mobile Robots and Unmanned Ground Vehicles
    by Reina G, Das TK, Quaglia G, et al. on July 21, 2021 at 12:00 am

    Inspired by the fifth-year anniversary celebration of the homonymous symposium at the International Mechanical Engineering Congress & Exposition (IMECE), this Special Section with ten articles shares the latest research efforts in design, theory, development, and applications for mobile robots and unmanned ground vehicles.

Exploiting Redundancies for Workspace Enlargement and Joint Trajectory Optimization of a Kinematically Redundant Hybrid Parallel Robot


In this paper, possibilities for workspace enlargement and joint trajectory optimization of a (6 + 3)-degree-of-freedom kinematically redundant hybrid parallel robot are investigated. The inverse kinematic problem of the robot can be solved analytically, which is a desirable property of redundant robots, and is implemented in the investigations. A new method for detecting mechanical interferences between two links which are not directly connected is proposed for evaluating the workspace. Redundant degrees-of-freedom are optimized in order to further expand the workspace. An approach for determining the desired redundant joint coordinates is developed so that a performance index can be minimized approximately when the robot is following a prescribed Cartesian trajectory. The presented approaches are readily applicable to other kinematically redundant hybrid parallel robots proposed by the authors.
Read More
Journal of Mechanisms and Robotics Open Issues