Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Exploiting Redundancies for Workspace Enlargement and Joint Trajectory Optimization of a Kinematically Redundant Hybrid Parallel Robot

Abstract

In this paper, possibilities for workspace enlargement and joint trajectory optimization of a (6 + 3)-degree-of-freedom kinematically redundant hybrid parallel robot are investigated. The inverse kinematic problem of the robot can be solved analytically, which is a desirable property of redundant robots, and is implemented in the investigations. A new method for detecting mechanical interferences between two links which are not directly connected is proposed for evaluating the workspace. Redundant degrees-of-freedom are optimized in order to further expand the workspace. An approach for determining the desired redundant joint coordinates is developed so that a performance index can be minimized approximately when the robot is following a prescribed Cartesian trajectory. The presented approaches are readily applicable to other kinematically redundant hybrid parallel robots proposed by the authors.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy