Latest Papers

ASME Journal of Mechanisms and Robotics

  • Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
    by Audet JM, Gosselin C. on July 21, 2021 at 12:00 am

    AbstractIn this paper, the concept of underactuated redundancy is presented using a novel spatial two-degrees-of-freedom (2-DoF) gravity-balanced rotational manipulator, composed of movable counterweights. The proposed kinematic arrangement makes it possible to intuitively manipulate a payload undergoing 3-DoF spatial rotations by adding a third rotational axis oriented in the direction of gravity. The static equilibrium equations of the 2-DoF architecture are first described in order to provide the required configuration of the counterweights for a statically balanced mechanism. A method for calibrating the mechanism, which establishes the coefficients of the static equilibrium equations, is also presented. In order to both translate and rotate the payload during manipulation, the rotational manipulator is mounted on an existing translational manipulator. Experimental validations of both systems are presented to demonstrate the intuitive and responsive behavior of the manipulators during physical human–robot interactions.

  • Special Section: Mobile Robots and Unmanned Ground Vehicles
    by Reina G, Das TK, Quaglia G, et al. on July 21, 2021 at 12:00 am

    Inspired by the fifth-year anniversary celebration of the homonymous symposium at the International Mechanical Engineering Congress & Exposition (IMECE), this Special Section with ten articles shares the latest research efforts in design, theory, development, and applications for mobile robots and unmanned ground vehicles.

Topological Reconfiguration Planning for a Variable Topology Truss


This paper introduces a new class of self-reconfigurable robot: the variable topology truss (VTT), which is an extension of an existing class of robots: the variable geometry truss (VGT). Variable topology trusses have the additional capability to change the topology of the truss through self-reconfiguration by merging and splitting the nodes of the truss. We first introduce a hardware platform that enables this reconfigurability. We give a procedure to compute all possible distinct reconfiguration actions for a given robot topology. We show that 18 members are required for a minimal reconfigurable VTT, and we exhaustively enumerate all possible reconfigurable topologies for VTTs up to 29 members. Lastly, we introduce the topology network, which describes the relationship between these reconfigurable topologies. The topology network concept enables some high-level planning and provides insights into the design of truss topologies.
Read More
Journal of Mechanisms and Robotics Open Issues