Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Miniature Continuum Manipulator With Three Degrees-of-Freedom Force Sensing for Retinal Microsurgery


Retinal microsurgery requires the precise manipulation of delicate tissue in the interior of the eye. Smart surgical instruments with dexterous tip and force sensing capabilities can permit surgeons to perform more flexible surgical procedures and obtain imperceptible force information, thereby improving the safety and efficiency of microsurgery. In this study, we present an intraocular continuum manipulator with three degrees-of-freedom (DOF) force sensing capabilities. A contact-aided compliant mechanism based on cutting superelastic Nitinol tubes is used to provide high dexterity. It enables two rotational DOFs at the distal end of the manipulator. Fiber Bragg grating (FBG) fibers are used to provide high-resolution force measurements. Moreover, a novel Nitinol flexure was designed to achieve high axial force sensitivity. The experimental results show that the maximum bending angle of the dexterous tip is more than ±45 deg for each DOF with high repeatability. In addition, the experimental results demonstrate that the proposed force sensor can provide sub-millinewton resolution. The manipulator has also been validated with an artificial eye model, demonstrating the potential clinical value of the manipulator for retinal microsurgery.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy