Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Design Framework and Clinical Evaluation of a Passive Hydraulic Patient Simulator for Biceps Spasticity Assessment Training


This article presents the framework for developing a passive (unpowered) mechanical training simulator for replication of biceps spasticity to complement current clinical assessment training. The passive training simulator was developed to mimic three main behavioral features of spasticity, i.e., abnormal muscle tone, catch-release behavior, and range of motion (ROM) reduction. The simulator can replicate varied levels of spasticity (Modified Ashworth Scale (MAS) levels 0–4) using a combination of three adjustable mechanical design features, i.e., resistance level, catch angle, and ROM selectors. Bench-top evaluation examined the performance of individual mechanical design features, as well as their combined performance. Spastic muscle resistance profiles generated by the simulator qualitatively agreed with the clinical descriptions of spasticity in the MAS. Mean peak simulated resistive torque fell within the clinical measures from actual spasticity patients for MAS 1–4, but was lower for MAS 0 (0.9, 3.5, 4.2, 6.9, 9.8 Nm for MAS 0–4, respectively). Seven clinicians were invited to validate the simulator performance. They were asked to identify the simulated MAS level during a blinded assessment and to score the realism of each simulation feature using a five-point scale, where 3 was “about right,” during a disclosed assessment. The mean percent agreement of clinicians’ judgments was 76 ± 12%. The mean realism score throughout MAS 0–4 were 2.82 ± 0.15. Preliminary results suggested good potential for this simulator in helping future healthcare practitioners learn and practice the basics of spasticity assessment.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy