Latest Papers

ASME Journal of Mechanisms and Robotics

  • Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
    by Audet JM, Gosselin C. on July 21, 2021 at 12:00 am

    AbstractIn this paper, the concept of underactuated redundancy is presented using a novel spatial two-degrees-of-freedom (2-DoF) gravity-balanced rotational manipulator, composed of movable counterweights. The proposed kinematic arrangement makes it possible to intuitively manipulate a payload undergoing 3-DoF spatial rotations by adding a third rotational axis oriented in the direction of gravity. The static equilibrium equations of the 2-DoF architecture are first described in order to provide the required configuration of the counterweights for a statically balanced mechanism. A method for calibrating the mechanism, which establishes the coefficients of the static equilibrium equations, is also presented. In order to both translate and rotate the payload during manipulation, the rotational manipulator is mounted on an existing translational manipulator. Experimental validations of both systems are presented to demonstrate the intuitive and responsive behavior of the manipulators during physical human–robot interactions.

  • Special Section: Mobile Robots and Unmanned Ground Vehicles
    by Reina G, Das TK, Quaglia G, et al. on July 21, 2021 at 12:00 am

    Inspired by the fifth-year anniversary celebration of the homonymous symposium at the International Mechanical Engineering Congress & Exposition (IMECE), this Special Section with ten articles shares the latest research efforts in design, theory, development, and applications for mobile robots and unmanned ground vehicles.

Connectivity Calculation-Based Automatic Synthesis of Planar Multi-Loop Mechanisms

Abstract

The creative design of kinematic structures with excellent performance remains an open issue in the quest for developing novel multi-loop mechanisms. This study presents an automatic method to synthesize all nonisomorphic planar multi-loop mechanisms satisfying the required connectivity between the base and the end-effector. First, based on the connectivity matrix calculation, all multi-loop mechanisms are generated from synthesized kinematic chains. Second, the concepts of perimeter, canonical, and characteristic graphs of multi-color topological graphs are addressed to acquire the simplified characteristic hybrid code (SCHC) in order to eliminate isomorphic multi-loop mechanisms. Then, an automatic method to synthesize all nonisomorphic planar multi-loop mechanisms with the required connectivity between the base and the end-effector is provided. Finally, a practical application of this synthesis method is illustrated by taking the mechanical arm of a face-shovel hydraulic excavator as an example to demonstrate the effectiveness of the method.
Read More
Journal of Mechanisms and Robotics Open Issues