Latest Papers

ASME Journal of Mechanisms and Robotics

  • Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
    by Audet JM, Gosselin C. on July 21, 2021 at 12:00 am

    AbstractIn this paper, the concept of underactuated redundancy is presented using a novel spatial two-degrees-of-freedom (2-DoF) gravity-balanced rotational manipulator, composed of movable counterweights. The proposed kinematic arrangement makes it possible to intuitively manipulate a payload undergoing 3-DoF spatial rotations by adding a third rotational axis oriented in the direction of gravity. The static equilibrium equations of the 2-DoF architecture are first described in order to provide the required configuration of the counterweights for a statically balanced mechanism. A method for calibrating the mechanism, which establishes the coefficients of the static equilibrium equations, is also presented. In order to both translate and rotate the payload during manipulation, the rotational manipulator is mounted on an existing translational manipulator. Experimental validations of both systems are presented to demonstrate the intuitive and responsive behavior of the manipulators during physical human–robot interactions.

  • Special Section: Mobile Robots and Unmanned Ground Vehicles
    by Reina G, Das TK, Quaglia G, et al. on July 21, 2021 at 12:00 am

    Inspired by the fifth-year anniversary celebration of the homonymous symposium at the International Mechanical Engineering Congress & Exposition (IMECE), this Special Section with ten articles shares the latest research efforts in design, theory, development, and applications for mobile robots and unmanned ground vehicles.

Structure Synthesis of a Class of Parallel Manipulators With Fully Decoupled Projective Motion

Abstract

This paper describes the structure synthesis of a special class of parallel manipulators with fully decoupled motion, that is, a one-to-one correspondence between the instantaneous motion space of the end-effector and the joint space of the manipulator. A notable finding of this study is that a fully decoupled design can be achieved for parallel manipulators with any number of degrees-of-freedom (DOFs) when the rotational DOF of the end-effector is expressed in the form of a projective angle representation. On the basis of the geometrical reasoning of the projective motion interpreted by screw algebra, a systematic approach is developed for synthesizing the structures of f-DOF (f ≤ 6) parallel manipulators with fully decoupled projective motion. Several 2-, 3-, 4-, 5-, and 6-DOF parallel manipulators with fully decoupled projective motion were designed for illustrating the developed method.
Read More
Journal of Mechanisms and Robotics Open Issues