Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Structure Synthesis of a Class of Parallel Manipulators With Fully Decoupled Projective Motion

Abstract

This paper describes the structure synthesis of a special class of parallel manipulators with fully decoupled motion, that is, a one-to-one correspondence between the instantaneous motion space of the end-effector and the joint space of the manipulator. A notable finding of this study is that a fully decoupled design can be achieved for parallel manipulators with any number of degrees-of-freedom (DOFs) when the rotational DOF of the end-effector is expressed in the form of a projective angle representation. On the basis of the geometrical reasoning of the projective motion interpreted by screw algebra, a systematic approach is developed for synthesizing the structures of f-DOF (f ≤ 6) parallel manipulators with fully decoupled projective motion. Several 2-, 3-, 4-, 5-, and 6-DOF parallel manipulators with fully decoupled projective motion were designed for illustrating the developed method.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy