Latest Papers

ASME Journal of Mechanisms and Robotics

  • A Small-Scale Integrated Jumping-Crawling Robot: Design, Modeling, and Demonstration
    on June 16, 2025 at 12:00 am

    AbstractThe small jumping-crawling robot improves its obstacle-crossing ability by selecting appropriate locomotion methods. However, current research on jumping-crawling robots remains focused on enhancing specific aspects of performance, and several issues still exist, including nonadjustable gaits, poor stability, nonadjustable jumping posture, and poor motion continuity. This article presents a small jumping-crawling robot with decoupled jumping and crawling mechanisms, offline adjustable gaits, autonomous self-righting, autonomous steering, and certain slope-climbing abilities. The crawling mechanism adopts a partially adjustable Klann six-bar linkage, which can generate four stride lengths and three gaits. The jumping mechanism is designed as a six-bar linkage with passive compliance, and an active clutch allows energy storage and release in any state. The autonomous self-righting mechanism enables the robot to self-right after tipping over, meanwhile providing support, steering, and posture adjustment functions. Prototype experiments show that the designed robot demonstrates good motion stability and can climb a 45 deg slope without tipping over. The robot shows excellent steering performance, with a single action taking 5 s and achieving a steering angle of 11.5 deg. It also exhibits good motion continuity, with an average recovery time of 12 s to return to crawling mode after a jump. Crawling experiments on rough terrain demonstrate the feasibility of applying the designed robot in real-world scenarios.

A Sliding-Mode Control Algorithm to Enhance In-Hand Motion Capabilities

Abstract

This article reports a method for regulating the internal forces during in-hand manipulation of an unknown shaped object with soft robotic fingers. The internal forces ensure that the object does not move between the robotic fingers, thus improving the grip. It is shown that if soft fingers show bounded conformity and the finger–object interface have bounded relative slip, then the relative angular velocity between the object and the fingertip coordinate frame in contact is bounded. Detailed derivation of the proof is presented. The proof is later used to define a new metric of relative slip. The metric is used to design a sliding mode control algorithm that results in an efficient grip, which is robust toward uncertainty in object shape. The robotic fingers are assumed to be under virtual rigidity constraint, that is, the distance between the fingertips do not change. The control algorithm is attractive as it skirts requirement of information of the shape of the object or to solve optimization problems. The grip with the robust control algorithm is shown to be finite-time stable through Lyapunov’s method. The methodology is demonstrated using simulations.
Read More
Journal of Mechanisms and Robotics Open Issues