Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

A Sliding-Mode Control Algorithm to Enhance In-Hand Motion Capabilities


This article reports a method for regulating the internal forces during in-hand manipulation of an unknown shaped object with soft robotic fingers. The internal forces ensure that the object does not move between the robotic fingers, thus improving the grip. It is shown that if soft fingers show bounded conformity and the finger–object interface have bounded relative slip, then the relative angular velocity between the object and the fingertip coordinate frame in contact is bounded. Detailed derivation of the proof is presented. The proof is later used to define a new metric of relative slip. The metric is used to design a sliding mode control algorithm that results in an efficient grip, which is robust toward uncertainty in object shape. The robotic fingers are assumed to be under virtual rigidity constraint, that is, the distance between the fingertips do not change. The control algorithm is attractive as it skirts requirement of information of the shape of the object or to solve optimization problems. The grip with the robust control algorithm is shown to be finite-time stable through Lyapunov’s method. The methodology is demonstrated using simulations.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy