Latest Papers

ASME Journal of Mechanisms and Robotics

  • Theoretical Analysis of Workspace of a Hybrid Offset Joint
    on December 19, 2024 at 12:00 am

    AbstractOffset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

  • A Novel Delta-Like Parallel Robot With Three Translations and Two Pitch Rotations for Peg-in-Hole Assembly
    on December 19, 2024 at 12:00 am

    AbstractThis paper presents a novel 5-degree-of-freedom (5-DOF) delta-like parallel robot named the double-pitch-delta robot, which can output three translations and two pitch rotations for peg-in-hole assembly. First, the kinematic mechanism of the new robot is designed based on the DOF requirements. Second, the closed-form kinematic model of the double-pitch-delta robot is established. Finally, the workspace of the double-pitch-delta robot is quantitatively analyzed, and a physical prototype of the new robot is developed to verify the effectiveness of the designed mechanism and the established models. Compared with the existing 5-DOF parallel robots with two pitch rotations, the double-pitch-delta robot has a simpler forward displacement model, larger workspace, and fewer singular loci. The double-pitch-delta robot can be also extended as a 6-DOF hybrid robot with the full-cycle tool-axis rotation to satisfy more complex operations. With these benefits, the new robot has a promising prospect in assembly applications.

Stability Region-Based Analysis of Walking and Push Recovery Control

Abstract

To achieve walking and push recovery successfully, a biped robot must be able to determine if it can maintain its current contact configuration or transition into another one without falling. In this study, the ability of a humanoid robot to maintain single support (SS) or double support (DS) contact and to achieve a step are represented by balanced and steppable regions, respectively, as proposed partitions of an augmented center-of-mass-state space. These regions are constructed with an optimization method that incorporates full-order system dynamics, system properties such as kinematic and actuation limits, and contact interactions with the environment in the two-dimensional sagittal plane. The SS balanced, DS balanced, and steppable regions are obtained for both experimental and simulated walking trajectories of the robot with and without the swing foot velocity constraint to evaluate the contribution of the swing leg momentum. A comparative analysis against one-step capturability, the ability of a biped to come to a stop after one step, demonstrates that the computed steppable region significantly exceeds the one-step capturability of an equivalent reduced-order model. The use of balanced regions to characterize the full balance capability criteria of the system and benchmark controllers is demonstrated with three push recovery controllers. The implemented hip–knee–ankle controller resulted in improved stabilization with respect to decreased foot tipping and time required to balance, relative to an existing hip–ankle controller and a gyro balance feedback controller.
Read More
Journal of Mechanisms and Robotics Open Issues