Latest Papers

ASME Journal of Mechanisms and Robotics

  • Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
    by Audet JM, Gosselin C. on July 21, 2021 at 12:00 am

    AbstractIn this paper, the concept of underactuated redundancy is presented using a novel spatial two-degrees-of-freedom (2-DoF) gravity-balanced rotational manipulator, composed of movable counterweights. The proposed kinematic arrangement makes it possible to intuitively manipulate a payload undergoing 3-DoF spatial rotations by adding a third rotational axis oriented in the direction of gravity. The static equilibrium equations of the 2-DoF architecture are first described in order to provide the required configuration of the counterweights for a statically balanced mechanism. A method for calibrating the mechanism, which establishes the coefficients of the static equilibrium equations, is also presented. In order to both translate and rotate the payload during manipulation, the rotational manipulator is mounted on an existing translational manipulator. Experimental validations of both systems are presented to demonstrate the intuitive and responsive behavior of the manipulators during physical human–robot interactions.

  • Special Section: Mobile Robots and Unmanned Ground Vehicles
    by Reina G, Das TK, Quaglia G, et al. on July 21, 2021 at 12:00 am

    Inspired by the fifth-year anniversary celebration of the homonymous symposium at the International Mechanical Engineering Congress & Exposition (IMECE), this Special Section with ten articles shares the latest research efforts in design, theory, development, and applications for mobile robots and unmanned ground vehicles.

Stability Region-Based Analysis of Walking and Push Recovery Control


To achieve walking and push recovery successfully, a biped robot must be able to determine if it can maintain its current contact configuration or transition into another one without falling. In this study, the ability of a humanoid robot to maintain single support (SS) or double support (DS) contact and to achieve a step are represented by balanced and steppable regions, respectively, as proposed partitions of an augmented center-of-mass-state space. These regions are constructed with an optimization method that incorporates full-order system dynamics, system properties such as kinematic and actuation limits, and contact interactions with the environment in the two-dimensional sagittal plane. The SS balanced, DS balanced, and steppable regions are obtained for both experimental and simulated walking trajectories of the robot with and without the swing foot velocity constraint to evaluate the contribution of the swing leg momentum. A comparative analysis against one-step capturability, the ability of a biped to come to a stop after one step, demonstrates that the computed steppable region significantly exceeds the one-step capturability of an equivalent reduced-order model. The use of balanced regions to characterize the full balance capability criteria of the system and benchmark controllers is demonstrated with three push recovery controllers. The implemented hip–knee–ankle controller resulted in improved stabilization with respect to decreased foot tipping and time required to balance, relative to an existing hip–ankle controller and a gyro balance feedback controller.
Read More
Journal of Mechanisms and Robotics Open Issues