Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Reprogrammable Kinematic Branches in Tessellated Origami Structures


We analyze the folding kinematics of a recently proposed origami-based tessellated structure called the Morph pattern, using thin, rigid panel assumptions. We discuss the geometry of the Morph unit cell that can exist in two characteristic modes differing in the mountain/valley assignment of a degree-four vertex and explain how a single tessellation of the Morph structure can undergo morphing through rigid origami kinematics resulting in multiple hybrid states. We describe the kinematics of the tessellated Morph pattern through multiple branches, each path leading to different sets of hybrid states. We study the kinematics of the tessellated structure through local and global Poisson’s ratios and derive an analytical condition for which the global ratio switches between negative and positive values. We show that the interplay between the local and global kinematics results in folding deformations in which the hybrid states are either locked in their current modes or are transformable to other modes of the kinematic branches, leading to a reprogrammable morphing behavior of the system. Finally, using a bar-and-hinge model-based numerical framework, we simulate the nonlinear folding behavior of the hybrid systems and verify the deformation characteristics that are predicted analytically.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy