Latest Papers

ASME Journal of Mechanisms and Robotics

  • Stable Inverse Dynamics for Feedforward Control of Nonminimum-Phase Underactuated Systems
    on January 25, 2023 at 12:00 am

    AbstractAn enhanced inverse dynamics approach is here presented for feedforward control of underactuated multibody systems, such as mechanisms or robots where the number of independent actuators is smaller than the number of degrees of freedom. The method exploits the concept of partitioning the independent coordinates into actuated and unactuated ones (through a QR-decomposition) and of linearly combined output, to obtain the internal dynamics of the nonminimum-phase system and then to stabilize it through proper output redefinition. Then, the exact algebraic model of the actuated sub-system is inverted, leading to the desired control forces with just minor approximations and no need for pre-actuation. The effectiveness of the proposed approach is assessed by three numerical test cases, by comparing it with some meaningful benchmarks taken from the literature. Finally, experimental verification through an underactuated robotic arm with two degrees of freedom is performed.

Design of a Single-Degree-of-Freedom Immersive Rehabilitation Device for Clustered Upper-Limb Motion

Abstract

Mechanical devices such as robots are widely adopted for limb rehabilitation. Due to the variety of human body parameters, the rehabilitation motion for different patients usually has its individual pattern; hence, we adopt clustering-based machine learning technique to find a limited number of motion patterns for upper-limb rehabilitation, so that they could represent the large amount of those from people who have various body parameters. By using the regression motion of the clustering result as the target, in this article, we seek to apply kinematic mapping-based motion synthesis framework to design a 1-degree-of-freedom (DOF) mechanism, such that it could lead the patients’ upper limb through the target motion. Also, considering rehab training generally involves a large amount of repetition on a daily basis, this article has developed a rehab system with unity3d based on virtual reality (VR). The proposed device and system could provide an immersive experience to the users, as well as the rehab motion data to the administrative staff for evaluation of users’ status. The construction of the integrated system and the experimental trial of the prototype are presented at the end of this article.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy