Latest Papers

ASME Journal of Mechanisms and Robotics

  • Integrated Wheel–Foot–Arm Design of a Mobile Platform With Linkage Mechanisms
    on March 20, 2024 at 12:00 am

    AbstractInspired by lizards, a novel mobile platform with revolving linkage legs is proposed. The platform consists of four six-bar bipedal modules, and it is designed for heavy transportation on unstructured terrain. The platform possesses smooth-wheeled locomotion and obstacle-adaptive legged locomotion to enhance maneuverability. The kinematics of the six-bar bipedal modules is analyzed using the vector loop method, subsequently ascertaining the drive scheme. The foot trajectory compensation curve is generated using the fixed-axis rotation contour algorithm, which effectively reduces the centroid fluctuation and enables seamless switching between wheels and legs. When encountering obstacles, the revolving linkage legs act as climbing arms, facilitating seamless integration of wheel, foot, and arm. A physical prototype is developed to test the platform on three typical terrains: flat terrain, slope, and vertical obstacle. The experimental results demonstrated the feasibility of the platform structure. The platform can climb obstacles higher than its own height without adding extra actuation.

Analysis of the Rigid Motion of a Conical Developable Mechanism

Abstract

We demonstrate analytically that it is possible to construct a developable mechanism on a cone that has rigid motion. We solve for the paths of rigid motion and analyze the properties of this motion. In particular, we provide an analytical method for predicting the behavior of the mechanism with respect to the conical surface. Moreover, we observe that the conical developable mechanisms specified in this article have motion paths that necessarily contain bifurcation points, which lead to an unbounded array of motion paths in the parameterization plane.
Read More
Journal of Mechanisms and Robotics Open Issues