Latest Papers

ASME Journal of Mechanisms and Robotics

  • Stable Inverse Dynamics for Feedforward Control of Nonminimum-Phase Underactuated Systems
    on January 25, 2023 at 12:00 am

    AbstractAn enhanced inverse dynamics approach is here presented for feedforward control of underactuated multibody systems, such as mechanisms or robots where the number of independent actuators is smaller than the number of degrees of freedom. The method exploits the concept of partitioning the independent coordinates into actuated and unactuated ones (through a QR-decomposition) and of linearly combined output, to obtain the internal dynamics of the nonminimum-phase system and then to stabilize it through proper output redefinition. Then, the exact algebraic model of the actuated sub-system is inverted, leading to the desired control forces with just minor approximations and no need for pre-actuation. The effectiveness of the proposed approach is assessed by three numerical test cases, by comparing it with some meaningful benchmarks taken from the literature. Finally, experimental verification through an underactuated robotic arm with two degrees of freedom is performed.

An Optimal Design of a Flexible Piping Inspection Robot

Abstract

This study presents an optimization approach for the design of a piping inspection robot. A rigid bio-inspired piping inspection robot that moves like a caterpillar was designed and developed at LS2N, France. By the addition of tensegrity mechanisms between the motor modules, the mobile robot becomes flexible to pass through the bends. However, the existing motor units prove to be oversized for passing through pipe bends at 90 deg. Thus, three cascading optimization problems are presented in this article to determine the sizing of robot assembly that can overcome such pipe bends. The first problem deals with the identification of design parameters of the tensegrity mechanism based on static stability. Followed by that, in the second problem, the optimum design parameters of the robot modules are determined for the robot assembly without the presence of leg mechanisms. The third problem deals with the determination of the size of the leg mechanism for the results of the two previous optimization problems. A digital model of the optimized robot assembly is then realized using cad software.
Read More
Journal of Mechanisms and Robotics Open Issues

Generated by Feedzy