Latest Papers

ASME Journal of Mechanisms and Robotics

  • Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
    by Audet JM, Gosselin C. on July 21, 2021 at 12:00 am

    AbstractIn this paper, the concept of underactuated redundancy is presented using a novel spatial two-degrees-of-freedom (2-DoF) gravity-balanced rotational manipulator, composed of movable counterweights. The proposed kinematic arrangement makes it possible to intuitively manipulate a payload undergoing 3-DoF spatial rotations by adding a third rotational axis oriented in the direction of gravity. The static equilibrium equations of the 2-DoF architecture are first described in order to provide the required configuration of the counterweights for a statically balanced mechanism. A method for calibrating the mechanism, which establishes the coefficients of the static equilibrium equations, is also presented. In order to both translate and rotate the payload during manipulation, the rotational manipulator is mounted on an existing translational manipulator. Experimental validations of both systems are presented to demonstrate the intuitive and responsive behavior of the manipulators during physical human–robot interactions.

  • Special Section: Mobile Robots and Unmanned Ground Vehicles
    by Reina G, Das TK, Quaglia G, et al. on July 21, 2021 at 12:00 am

    Inspired by the fifth-year anniversary celebration of the homonymous symposium at the International Mechanical Engineering Congress & Exposition (IMECE), this Special Section with ten articles shares the latest research efforts in design, theory, development, and applications for mobile robots and unmanned ground vehicles.

Inertial Measurement Unit-Based Optimization Control of a Soft Exosuit for Hip Extension and Flexion Assistance

Abstract

The optimization of the assistive force of a soft exosuit is crucial to the assistive effect. In this paper, an inertial measurement unit (IMU)-based optimization controller was designed to provide effective hip extension and flexion assistance for a soft hip-assistive exosuit. The parameters of the assistive profiles that were defined by two functions were approximatively estimated based on an analysis of biological hip power, and then optimized in real time using the hip angles measured by two IMUs bound to the thighs of the wearer. The peak and offset timings were determined using the parameters of the previous gait, while the start and stop points were determined from those of the current gait. Confirmation experiment was conducted in which four subjects were tested to demonstrate the validity of the optimization by applying the optimized parameters to the soft exosuit developed by the authors’ group. Two of the subjects completed the outdoor walking test at a self-determined pace while carrying a load of 15 kg. All the subjects conducted the walking test on a treadmill at a constant speed of 1.53 m/s with the same load. The results showed that the proposed optimization controller worked well without considering individual differences. In the outdoor walking test, the wearer’s natural gait could be maintained by applying the optimized assistive forces. In the treadmill walking test, metabolic rate with assistance turned on was reduced by 8.53 ± 2.65% (average ± SEM) compared with the result of assistance turned off.
Read More
Journal of Mechanisms and Robotics Open Issues