Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Identification of Non-Transversal Motion Bifurcations of Linkages


The local analysis is an established approach to the study of singularities and mobility of linkages. The key result of such analyses is a local picture of the finite motion through a configuration. This reveals the finite mobility at that point and the tangents to smooth motion curves. It does, however, not immediately allow to distinguish between motion branches that do not intersect transversally (which is a rather uncommon situation that has only recently been discussed in the literature). The mathematical framework for such a local analysis is the kinematic tangent cone. It is shown in this paper that the constructive definition of the kinematic tangent cone already involves all information necessary to distinguish different motion branches. A computational method is derived by amending the algorithmic framework reported in previous publications.
Read More
Journal of Mechanisms and Robotics Open Issues