Latest Papers

ASME Journal of Mechanisms and Robotics

  • Measurement Configuration Optimization and Kinematic Calibration of a Parallel Robot
    by Huang C, Xie F, Liu X, et al. on December 10, 2021 at 12:00 am

    AbstractThis paper presents the kinematic calibration of a four-degrees-of-freedom (4DOF) high-speed parallel robot. In order to improve the calibration effect by decreasing the influence of the unobservable disturbance variables introduced by error measurement, a measurement configuration optimization method is proposed. Configurations are iteratively selected inside the workspace by a searching algorithm, then the selection results are evaluated through an index associated with the condition number of the identification Jacobian matrix; finally, the number of optimized configurations is determined. Since the selection algorithm has been shown to be sensitive to local minima, a meta-heuristic method has been applied to decrease this sensibility. To verify the effectiveness of the algorithm and kinematic calibration, computation validations, pose error estimations, and experiments are performed. The results show that the identification accuracy and calibration effect can be significantly improved by using the optimized configurations.

Classification of a 3-RER Parallel Manipulator Based on the Type and Number of Operation Modes


The type/number of operation modes of a parallel manipulator (PM) may vary with the link parameters of the PM. This paper presents a systematic classification of a 3-RER PM based on the type/number of operation modes. Here, R and E denote revolute joint and planar joint, respectively. The 3-RER PM was proposed as a 4-degree-of-freedom (DOF) 3T1R PM in the literature. Using the proposed method, classification of a PM based on the type/number of operation modes can be carried out in four steps, including formulation of constraint equations of the PM, preliminary classification of the PM using Gröbner cover, operation mode analysis of all the types of PMs using primary decomposition of ideals, and identification of redundant types of PMs. The classification of the 3-RER PM shows that it has 13 types. Besides the two 4-DOF 3T1R operation modes, different types of 3-RER PMs may have up to two more 3-DOF or other types of 4-DOF operation modes. Motion characteristics of the moving platform of 3-RER PMs are also identified using Euler parameter quaternions. This work is the first systematic study on the impact of link parameters on the operation modes of the 3-RER PM and provides a solid foundation for further research on the design and control of 3-RER PMs and other multi-mode (or reconfigurable) PMs.
Read More
Journal of Mechanisms and Robotics Open Issues